Scheduling

An Engineering Approach to Computer Networking
Outline

- **What is scheduling**
- Why we need it
- Requirements of a scheduling discipline
- Fundamental choices
- Scheduling best effort connections
- Scheduling guaranteed-service connections
- Packet drop strategies
Scheduling

- Sharing always results in contention
- A *scheduling discipline* resolves contention:
 - who’s next?
- Key to *fairly sharing resources* and *providing performance guarantees*
Components

- A scheduling discipline does two things:
 - decides service order
 - manages queue of service requests
- Example:
 - consider queries awaiting web server
 - scheduling discipline decides service order
 - and also if some query should be ignored
Where?

- Anywhere where contention may occur
- At every layer of protocol stack
- Usually studied at network layer, at output queues of switches
Outline

- What is scheduling
- Why we need it
- Requirements of a scheduling discipline
- Fundamental choices
- Scheduling best effort connections
- Scheduling guaranteed-service connections
- Packet drop strategies
Why do we need one?

- *Because future applications need it*
- *We expect two types of future applications*
 - best-effort (adaptive, non-real time)
 - e.g. email, some types of file transfer
 - guaranteed service (non-adaptive, real time)
 - e.g. packet voice, interactive video, stock quotes
What can scheduling disciplines do?

- Give different users different qualities of service
- Example of passengers waiting to board a plane
 - early boarders spend less time waiting
 - bumped off passengers are ‘lost’!
- Scheduling disciplines can allocate
 - bandwidth
 - delay
 - loss
- They also determine how fair the network is
Outline

- What is scheduling
- Why we need it
- Requirements of a scheduling discipline
- Fundamental choices
- Scheduling best effort connections
- Scheduling guaranteed-service connections
- Packet drop strategies
Requirements

- An ideal scheduling discipline
 - is easy to implement
 - is fair
 - provides performance bounds
 - allows easy *admission control* decisions
 - to decide whether a new flow can be allowed
Requirements: 1. Ease of implementation

- Scheduling discipline has to make a decision once every few microseconds!
- Should be implementable in a few instructions or hardware
 - for hardware: critical constraint is VLSI *space*
- Work per packet should scale less than linearly with number of active connections
Requirements: 2. Fairness

- Scheduling discipline *allocates a resource*
- An allocation is fair if it satisfies *min-max fairness*
- Intuitively
 - each connection gets no more than what it wants
 - the excess, if any, is equally shared

![Diagram showing allocation process](image-url)
Fairness (contd.)

- Fairness is *intuitively* a good idea
- But it also provides *protection*
 - traffic hogs cannot overrun others
 - automatically builds *firewalls* around heavy users
- Fairness is a *global* objective, but scheduling is local
- Each endpoint must restrict its flow to the smallest fair allocation
- Dynamics + delay => global fairness may never be achieved
Requirements: 3. Performance bounds

- What is it?
 - A way to obtain a desired level of service

- Can be *deterministic* or *statistical*

- Common parameters are
 - bandwidth
 - delay
 - delay-jitter
 - loss
Bandwidth

- Specified as minimum bandwidth measured over a prespecified interval
- E.g. > 5Mbps over intervals of > 1 sec
- Meaningless without an interval!
- Can be a bound on average (sustained) rate or peak rate
- Peak is measured over a ‘small’ interval
- Average is asymptote as intervals increase without bound
Delay and delay-jitter

- Bound on some parameter of the delay distribution curve
Req’ments: 4. Ease of admission control

- Admission control needed to provide QoS
- Overloaded resource cannot guarantee performance
- Choice of scheduling discipline affects ease of admission control algorithm
Outline

- What is scheduling
- Why we need it
- Requirements of a scheduling discipline
- Fundamental choices
- Scheduling best effort connections
- Scheduling guaranteed-service connections
- Packet drop strategies
Fundamental choices

1. Number of priority levels
2. Work-conserving vs. non-work-conserving
3. Degree of aggregation
4. Service order within a level
Choices: 1. Priority

- Packet is served from a given priority level only if no packets exist at higher levels (*multilevel priority with exhaustive service*)
- Highest level gets lowest delay
- Watch out for starvation!
- Usually map priority levels to delay classes

<table>
<thead>
<tr>
<th>Priority</th>
<th>Low bandwidth urgent messages</th>
<th>Realtime</th>
<th>Non-realtime</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Choices: 2. Work conserving vs. non-work-conserving

- Work conserving discipline is never idle when packets await service
- Why bother with non-work conserving?
Non-work-conserving disciplines

- Key conceptual idea: delay packet till *eligible*
- Reduces delay-jitter => fewer buffers in network
- How to choose eligibility time?
 - rate-jitter regulator
 - bounds maximum outgoing rate
 - delay-jitter regulator
 - compensates for variable delay at previous hop
Do we need non-work-conservation?

- Can remove delay-jitter at an endpoint instead
 - but also reduces size of switch buffers…
- Increases mean delay
 - not a problem for *playback* applications
- Wastes bandwidth
 - can serve best-effort packets instead
- Always punishes a misbehaving source
 - can’t have it both ways
- Bottom line: not too bad, implementation cost may be the biggest problem
Choices: 3. Degree of aggregation

- More aggregation
 - less state
 - cheaper
 - smaller VLSI
 - less to advertise
 - BUT: less individualization
- Solution
 - aggregate to a class, members of class have same performance requirement
 - no protection within class
Choices: 4. Service within a priority level

- In order of arrival (FCFS) or in order of a service tag
- Service tags => can arbitrarily reorder queue
 - Need to sort queue, which can be expensive
- FCFS
 - bandwidth hogs win (no protection)
 - no guarantee on delays
- Service tags
 - with appropriate choice, both protection and delay bounds possible
Outline

- What is scheduling
- Why we need it
- Requirements of a scheduling discipline
- Fundamental choices
 - Scheduling best effort connections
 - Scheduling guaranteed-service connections
- Packet drop strategies
Scheduling best-effort connections

- Main requirement is fairness
- Achievable using *Generalized processor sharing (GPS)*
 - Visit each non-empty queue in turn
 - Serve infinitesimal from each
 - Why is this fair?
 - How can we give weights to connections?
More on GPS

- GPS is unimplementable!
 - we cannot serve infinitesimals, only packets

- No packet discipline can be as fair as GPS
 - while a packet is being served, we are unfair to others

- Degree of unfairness can be bounded

- Define: $work(I,a,b) = \# \text{ bits transmitted for connection } I \text{ in time } [a,b]$

- Absolute fairness bound for discipline S
 - Max ($work_{GPS}(I,a,b) - work_S(I,a,b)$)

- Relative fairness bound for discipline S
 - Max ($work_S(I,a,b) - work_S(J,a,b)$)
What next?

- We can’t implement GPS
- So, let’s see how to emulate it
- We want to be as fair as possible
- But also have an efficient implementation
Weighted round robin

- Serve a packet from each non-empty queue in turn
- Unfair if packets are of different length or weights are not equal
- Different weights, fixed packet size
 - serve more than one packet per visit, after normalizing to obtain integer weights
- Different weights, variable size packets
 - normalize weights by mean packet size
 - e.g. weights {0.5, 0.75, 1.0}, mean packet sizes {50, 500, 1500}
 - normalize weights: {0.5/50, 0.75/500, 1.0/1500} = {0.01, 0.0015, 0.000666}, normalize again {60, 9, 4}
Problems with Weighted Round Robin

- With variable size packets and different weights, need to know mean packet size in advance
- Can be unfair for long periods of time
- E.g.
 - T3 trunk with 500 connections, each connection has mean packet length 500 bytes, 250 with weight 1, 250 with weight 10
 - Each packet takes $500 \times \frac{8}{45} \text{ Mbps} = 88.8 \text{ microseconds}$
 - Round time $= 2750 \times 88.8 = 244.2 \text{ ms}$
Weighted Fair Queueing (WFQ)

- Deals better with variable size packets and weights
- GPS is fairest discipline
- Find the *finish time* of a packet, *had we been doing GPS*
- Then serve packets in order of their finish times
WFQ: first cut

- Suppose, in each *round*, the server served one bit from each active connection.
- *Round number* is the number of rounds already completed.
 - can be fractional.
- If a packet of length *p* arrives to an empty queue when the round number is *R*, it will complete service when the round number is *R + p => finish number* is *R + p*.
 - independent of the number of other connections!
- If a packet arrives to a non-empty queue, and the previous packet has a finish number of *f*, then the packet’s finish number is *f + p*.
- Serve packets in order of finish numbers.
A catch

- A queue may need to be considered non-empty even if it has no packets in it
 - e.g. packets of length 1 from connections A and B, on a link of speed 1 bit/sec
 - at time 1, packet from A served, round number = 0.5
 - A has no packets in its queue, yet should be considered non-empty, because a packet arriving to it at time 1 should have finish number 1+
 - p

- A connection is active if the last packet served from it, or in its queue, has a finish number greater than the current round number
WFQ continued

- To sum up, assuming we know the current round number R
- Finish number of packet of length p
 - if arriving to active connection = previous finish number + p
 - if arriving to an inactive connection = $R + p$
- (How should we deal with weights?)
- To implement, we need to know two things:
 - is connection active?
 - if not, what is the current round number?
- Answer to both questions depends on computing the current round number (why?)
WFQ: computing the round number

- Naively: round number = number of rounds of service completed so far
 - what if a server has not served all connections in a round?
 - what if new conversations join in halfway through a round?
- Redefine round number as a real-valued variable that increases at a rate inversely proportional to the number of currently active connections
 - this takes care of both problems (why?)
- With this change, WFQ emulates GPS instead of bit-by-bit RR
Problem: iterated deletion

- A server recomputes round number on each packet arrival
- At any recomputation, the number of conversations can go up at most by one, but can go down to zero
- => overestimation

Trick
- use previous count to compute round number
- if this makes some conversation inactive, recompute
- repeat until no conversations become inactive
WFQ implementation

- On packet arrival:
 - use source + destination address (or VCI) to classify it and look up finish number of last packet served (or waiting to be served)
 - recalculate round number
 - compute finish number
 - insert in priority queue sorted by finish numbers
 - if no space, drop the packet with largest finish number

- On service completion
 - select the packet with the lowest finish number
Analysis

- Unweighted case:
 - if GPS has served x bits from connection A by time t
 - WFQ would have served at least $x - P$ bits, where P is the largest possible packet in the network

- WFQ could send *more* than GPS would \Rightarrow absolute fairness bound $> P$

- To reduce bound, choose smallest finish number only among packets that have started service in the corresponding GPS system (WF^2Q)
 - requires a regulator to determine eligible packets
Evaluation

- **Pros**
 - like GPS, it provides protection
 - can obtain worst-case end-to-end delay bound
 - gives users incentive to use intelligent flow control (and also provides rate information implicitly)

- **Cons**
 - needs per-connection state
 - iterated deletion is complicated
 - requires a priority queue
Outline

- What is scheduling
- Why we need it
- Requirements of a scheduling discipline
- Fundamental choices
- Scheduling best effort connections
- Scheduling guaranteed-service connections
- Packet drop strategies
Scheduling guaranteed-service connections

- With best-effort connections, goal is fairness
- With guaranteed-service connections
 - what performance guarantees are achievable?
 - how easy is admission control?
- We now study some scheduling disciplines that provide performance guarantees
WFQ

- Turns out that WFQ also provides performance guarantees

- Bandwidth bound
 - ratio of weights * link capacity
 - e.g. connections with weights 1, 2, 7; link capacity 10
 - connections get at least 1, 2, 7 units of b/w each

- End-to-end delay bound
 - assumes that the connection doesn’t send ‘too much’ (otherwise its packets will be stuck in queues)
 - more precisely, connection should be *leaky-bucket* regulated
 - # bits sent in time $[t_1, t_2] \leq \delta (t_2 - t_1) + \delta$
Parekh-Gallager theorem

- Let a connection be allocated weights at each WFQ scheduler along its path, so that the least bandwidth it is allocated is g
- Let it be leaky-bucket regulated such that # bits sent in time $[t_1, t_2] \leq \sum (t_2 - t_1)$
- Let the connection pass through K schedulers, where the kth scheduler has a rate $r(k)$
- Let the largest packet allowed in the network be P

$$\text{end_to_end_delay} / g \quad P / g \quad P / r(k)$$
Significance

- Theorem shows that WFQ can provide end-to-end delay bounds
- So WFQ provides both fairness and performance guarantees
- Bound holds regardless of cross traffic behavior
- Can be generalized for networks where schedulers are variants of WFQ, and the link service rate changes over time
Problems

- To get a delay bound, need to pick g
 - the lower the delay bounds, the larger g needs to be
 - large g => exclusion of more competitors from link
 - g can be very large, in some cases 80 times the peak rate!

- Sources must be leaky-bucket regulated
 - but choosing leaky-bucket parameters is problematic

- WFQ couples delay and bandwidth allocations
 - low delay requires allocating more bandwidth
 - wastes bandwidth for low-bandwidth low-delay sources
Delay-Earliest Due Date

- Earliest-due-date: packet with earliest deadline selected
- Delay-EDD prescribes how to assign deadlines to packets
- A source is required to send slower than its *peak rate*
- Bandwidth at scheduler reserved at peak rate
- Deadline = expected arrival time + delay bound
 - If a source sends faster than contract, delay bound will not apply
- Each packet gets a hard delay bound
- Delay bound is *independent* of bandwidth requirement
 - but reservation is at a connection’s peak rate
- Implementation requires per-connection state and a priority queue
Rate-controlled scheduling

- A *class* of disciplines
 - two components: regulator and scheduler
 - incoming packets are placed in regulator where they wait to become eligible
 - then they are put in the scheduler
- Regulator *shapes* the traffic, scheduler provides performance guarantees
Examples

- Recall
 - rate-jitter regulator
 - bounds maximum outgoing rate
 - delay-jitter regulator
 - compensates for variable delay at previous hop
- Rate-jitter regulator + FIFO
 - similar to Delay-EDD (what is the difference?)
- Rate-jitter regulator + multi-priority FIFO
 - gives both bandwidth and delay guarantees (RCSP)
- Delay-jitter regulator + EDD
 - gives bandwidth, delay, and delay-jitter bounds (Jitter-EDD)
Analysis

- First regulator on path monitors and regulates traffic => bandwidth bound
- End-to-end delay bound
 - delay-jitter regulator
 - reconstructs traffic => end-to-end delay is fixed (= worst-case delay at each hop)
 - rate-jitter regulator
 - partially reconstructs traffic
 - can show that end-to-end delay bound is smaller than (sum of delay bound at each hop + delay at first hop)
Decoupling

- Can give a low-bandwidth connection a low delay without overbooking
- E.g. consider connection A with rate 64 Kbps sent to a router with rate-jitter regulation and multipriority FCFS scheduling

- After sending a packet of length l, next packet is eligible at time $(\text{now} + \frac{l}{64} \text{Kbps})$
- If placed at highest-priority queue, all packets from A get low delay
- Can decouple delay and bandwidth bounds, unlike WFQ
Evaluation

- **Pros**
 - flexibility: ability to emulate other disciplines
 - can decouple bandwidth and delay assignments
 - end-to-end delay bounds are easily computed
 - do not require complicated schedulers to guarantee protection
 - can provide delay-jitter bounds

- **Cons**
 - require an additional regulator at each output port
 - delay-jitter bounds at the expense of increasing mean delay
 - delay-jitter regulation is expensive (clock synch, timestamps)
Summary

- Two sorts of applications: best effort and guaranteed service
- Best effort connections require fair service
 - provided by GPS, which is unimplementable
 - emulated by WFQ and its variants
- Guaranteed service connections require performance guarantees
 - provided by WFQ, but this is expensive
 - may be better to use rate-controlled schedulers
Outline

- What is scheduling
- Why we need it
- Requirements of a scheduling discipline
- Fundamental choices
- Scheduling best effort connections
- Scheduling guaranteed-service connections
- Packet drop strategies
Packet dropping

- Packets that cannot be served immediately are buffered
- Full buffers => *packet drop strategy*
- Packet losses happen almost always from best-effort connections (why?)
- Shouldn’t drop packets unless imperative
 - packet drop wastes resources (why?)
Classification of drop strategies

1. Degree of aggregation
2. Drop priorities
3. Early or late
4. Drop position
1. Degree of aggregation

- Degree of discrimination in selecting a packet to drop
- E.g. in vanilla FIFO, all packets are in the same class
- Instead, can classify packets and drop packets selectively
- The finer the classification the better the protection
- Max-min fair allocation of buffers to classes
 - drop packet from class with the longest queue (why?)
2. Drop priorities

- Drop lower-priority packets first
- How to choose?
 - endpoint marks packets
 - regulator marks packets
 - congestion loss priority (CLP) bit in packet header
CLP bit: pros and cons

- **Pros**
 - if network has spare capacity, all traffic is carried
 - during congestion, load is automatically shed

- **Cons**
 - separating priorities within a single connection is hard
 - what prevents all packets being marked as high priority?
2. Drop priority (contd.)

- Special case of AAL5
 - want to drop an entire frame, not individual cells
 - cells belonging to the selected frame are preferentially dropped

- Drop packets from ‘nearby’ hosts first
 - because they have used the least network resources
 - can’t do it on Internet because hop count (TTL) decreases
3. Early vs. late drop

- Early drop => drop even if space is available
 - signals endpoints to reduce rate
 - cooperative sources get lower overall delays, uncooperative sources get severe packet loss

- Early random drop
 - drop arriving packet with fixed drop probability if queue length exceeds threshold
 - intuition: misbehaving sources more likely to send packets and see packet losses
 - doesn’t work!
3. Early vs. late drop: RED

- Random early detection (RED) makes three improvements
- Metric is moving average of queue lengths
 - small bursts pass through unharmed
 - only affects sustained overloads
- Packet drop probability is a function of mean queue length
 - prevents severe reaction to mild overload
- Can mark packets instead of dropping them
 - allows sources to detect network state without losses
- RED improves performance of a network of cooperating TCP sources
- No bias against bursty sources
- Controls queue length regardless of endpoint cooperation
4. Drop position

- Can drop a packet from head, tail, or random position in the queue
- Tail
 - easy
 - default approach
- Head
 - harder
 - lets source detect loss earlier
4. Drop position (contd.)

- Random
 - hardest
 - if no aggregation, hurts hogs most
 - unlikely to make it to real routers

- Drop entire longest queue
 - easy
 - almost as effective as drop tail from longest queue