

CS 856 Internet Transport Performance

Introduction

Martin Karsten

School of Computer Science, University of Waterloo mkarsten@uwaterloo.ca

Martin Karsten - CS 856, Spring 2004

Contents

Waterloo

IIIII

Introduction

Problem Domains

- network control
- packet scheduling
- congestion control
- advanced communication patterns: mobility, multicast, etc.
- network architecture
- implementation aspects

Research Conceptions and Course Projects

Communication Networks

Transport infrastructure for intangible goods: Information

Digital Communication Network

- information represented as bits
- and aggregations thereof

Infrastructure

• devices, cables, antennas, laser, ...

Services & Applications \Rightarrow Layering

- e.g. ISDN 64 kbit/s channel \rightarrow service
 - call setup & speech encoding/decoding \rightarrow application (telephone)
 - analog fax over resulting audio channel \rightarrow application
 - "telephone application" \rightarrow service

Purpose of Communication Networks

The "Internet"

Waterloo

Internet (IP-based) Technology

- protocol suite: IP, DHCP, TCP, UDP, OSPF, BGP, HTTP, etc.
- specifications, software, hardware, policies

Network Domain

- collection of hosts and links
- common network technology

Administrative Domain

- common administrative authority
- coherent policy

Public Internet

- collection of network/administrative domains
- connected through least common denominator \rightarrow IP
- loosely coherent global policies
 - usage of BGP routing vs. local configuration of BGP routing

Waterloo **Internet Protocol Suite - Recap** 譜 **ISO Open Systems Interconnection (OSI) Reference Model** layer N+1 service **Application Layer** 7 6 **Presentation Layer** layer N+1 protocol Layer N+1 Layer N+1 5 **Session Layer** 4 **Transport Layer** layer N service

Layer N

Internet Model

3

2

1

• layer 1-4 & application layer

Network Layer

Data Link Layer

Physical Layer

• expanding?

Layer N

layer N protocol

Waterloo **Internet Protocol Suite - Recap Communication Layers between Processes Application Application** Process Process Tramsport **Tramsport** Instance Instance Network Network Network Network Instance Instance Instance Instance **Data Link** Data Link **Data Link** Data Link Instance Instance Instance Instance

Internetworking vs. Broadcast Networks

- limited scalability of broadcast networks \rightarrow LAN or MAN

Data Link Instance: Hardware/Device

modern network devices: some TCP/IP end system functionality

Transport & Network Instance: Software

• modern routers: network instance (partially) = special hardware

Internet - Today and Tomorrow

Current Services

- remote resource access: printing, file server, remote login, etc.
- information distribution: web, file transfer, etc.
- communication: email, news, chat, voice, video

Reliability and Performance - Public Internet

- often good enough to very good, but: would you trust your life on it?
- limited regulation and no minimum guarantees
- private IP networks \rightarrow different story

Vision

- uniform integrated/layered infrastructure
 - cost reduction: economies of scale
- diverse applications
- reliable services and predictable performance
- uniform public communication service?

Waterloo

IETF - Standardization & Research

Relevant Interfaces

- between modules
- between devices
- between networks

Internet Engineering Task Force

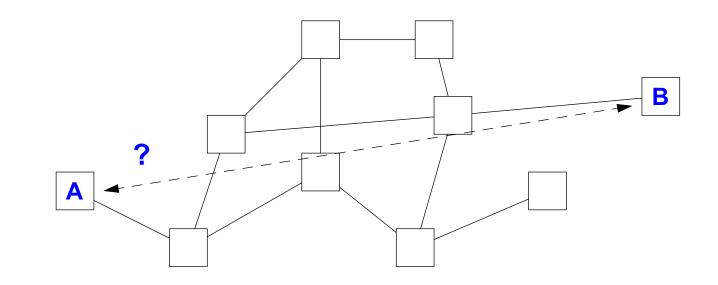
- standardization of protocols "on the wire"
- operates by "consensus" rather than formal voting
 - group of individuals rather than organizations
 - no formal membership \rightarrow open meetings and debate
- "running code" principle \rightarrow existing inter-operable systems required

IETF \leftrightarrow Research Community

- (decreasing) overlap
- (increasing) influence of vendors
- experimental documents (Internet Drafts, RFCs)

Note: Standardization → Technology AND Marketing !

1-intro.fm 8/20 May 5, 2004


Waterloo

IIIII

Routing

establish connectivity between end systems

- does at least one path exist?
- if multiple, which one to take?
- symmetric vs. asymmetric routing?

Routing Mechanisms

- information gathering: global vs. local vs. centralized
- path establishment: implicit vs. explicit

Waterloo

Connectivity & Multiplexing - Taxonomy

- circuit switching \rightarrow no multiplexing
 - establishment of closed physical end-to-end path
 - old telephone networks \rightarrow electrical circuit
 - fiber-optics networks (WDM) \rightarrow optical circuit
- time division multiplexing \rightarrow synchronous multiplexing
 - time slot \leftrightarrow fixed-size basic information unit (X bits per cell)
 - synchronous transmission, path identification through slot number
 - explicit path setup required
 - modern/current telephone networks (Sonet/SDH)

- virtual circuit \rightarrow asynchronous multiplexing with explicit path setup

- fixed- or variable-sized information unit
- asynchronous transmission, path identification through label/identifier
- label/identifier information exchanged during path setup
 - ATM (asynchronous transfer mode)

- datagram \rightarrow asynchronous multiplexing without explicit path setup

- fixed- or variable-sized information unit
- asynchronous transmission, path identification through end system address
- compact addressing required
- independent routing function required
 - Internet

Routing & Aggregation

- global scope: millions of end systems \rightarrow routing state?
- aggregation necessary
 - simple aggregation: e.g. class A,B,C subnets in IPv4 routing
- with and without explicit path setup

Internet Routing

- intra-domain \rightarrow efficiency (performance and load control)
 - link-state routing provides global information
 - requires increased communication and computation
- inter-domain \rightarrow policy and economics
 - distance-/path-vector routing \rightarrow route advertising
 - local optimization vs. global consistency?

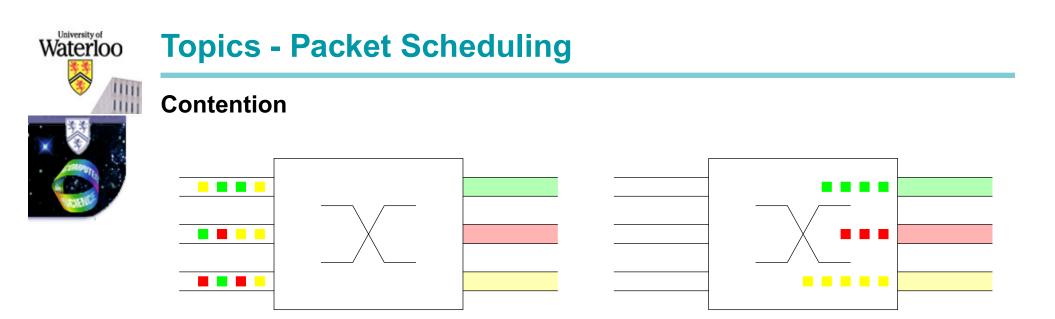
Inter-Domain Internet Routing

- old problem: flexibility \rightarrow classless inter-domain routing (CIDR)
 - requires more complicated lookup function (longest-prefix matching)
- new problem: exponential growth of routing state
 - multi-homing: multiple advertisements for each network

Waterloo

- establish connectivity
 - set up virtual circuit
 - find mobile end system
 - open firewall
 - etc.
- negotiate traffic and service contract
 - QoS signalling: interface vs. distributed algorithm
- overhead of network signalling?

Application-level Signalling


- e.g. initiate voice call
- private networks: integrate application & network signalling

Failure Handling

- node link overload and/or failure
- detect problematic condition and reroute traffic
- information gathering \rightarrow execute necessary changes

Waterloo

Input Queueing - Potential Bottlenecks

- classification & routing lookup
- access to backplane
- switching capacity of backplane

Output Queueing - Potential Bottlenecks

- link capacity
- link access (broadcast medium)

Waterloo

拙

Topics - Packet Scheduling

Asynchronous Multiplexing: (Unregulated) Arrival at Multiple Input Ports

- buffering \rightarrow delay
- buffer overflow \rightarrow drop

Diverse Requirements

- throughput
- delay
- loss

Packet Scheduling

- which packet to transmit next?
- buffer management
- granularity of discrimination \rightarrow application flow vs. traffic class
- relative vs. absolute service guarantees
- path setup \leftrightarrow traffic regulation & state setup

Fairness

Topics - Congestion Control

Datagram Network and Aggregated Routing

- no explicit path setup
- no pro-active resource allocation
- transient congestion will happen

Congestion Control

- original goal: regulate fast sender by slower receiver
- network congestion: regulate collection of senders by network
- contain congestion as fast as possible
- approximate available capacity (fair share)

Effects

- implicit network control through feedback loop
- stable resource allocation \rightarrow same effect as traditional network control?

Challenges

- large bandwidth/delay product and reaction delay
- high utilization vs. careful approximation of fair share of capacity

Waterloo

Topics - Mobility & Multicast

Advanced Communication Patterns

- group communication
- (m)anycast communication
- end system mobility
- middle-box functionality (e.g. firewalls)
- \Rightarrow Not well handled by connectionless datagram service
- e.g. mobility: information about current network access point needed
- e.g. multicast: information about current group membership needed

Existing Internet Proposals

- consider advanced communication patterns as exception
- state-based additions to IP (end system based \rightarrow overlay networks)
- dual-stack, specialized solutions
- no changes to underlying IP operation

What if these "exceptions" become the norm?

Waterloo

IIIII

Topics - Network Architecture

Waterloo

Current Internet Architecture

- unicast data communication
 - human-to-human communication?
 - real-time communication?
 - group communication?

• earth-based, fixed, wired workstations

- variety of devices?
- variety of access and transit links?
- device mobility?
- basic services
 - extremely high reliability requirements?
 - extremely security requirements?

Case for Integrated Infrastructure

- high efficiency needed
- engineering for the common case
- common case \rightarrow moving target?

Implementation of Network and Transport Functionality

Goals: High Efficiency, Low Complexity, High Flexibility, High Robustness

often conflicting goals

Conceptual Levels

- data plane everything directly involved in moving packets
- control plane configuration of data plane: routing, signalling, etc.

Implementation Levels

- software
 - user-level processes
 - kernel-level modules
- hardware
 - various programming models

System Types

- end system: workstations, servers, thin clients, etc.
- router: location in network ↔ expected traffic
- higher-level gateway: firewall, VoIP call server, etc.

Assessment of Conceptions

Scope

Waterloo

- node, network domain, or global Internet?
- special vs. general purpose
- isolated vs. universal function
- anticipated application & traffic mix
- scalability

Performance vs. Control

- average performance vs. worst-case performance
 - 90% argument vs. 99.99% argument
- explicit control & configuration
- robustness & reliability \rightarrow handling of failures
- economics & value-chain
- security implications

Course Projects

Goals

Waterloo

- thoroughly understand problem domain
- demonstrate understanding by project results and paper
 - design sensible mechanisms
 - meaningful performance investigations
 - sketch path to "perfect" solution
 - or: demonstrate that you have explored a large variety of alternatives
- practical experience in simulation and/or implementation and testing
- do more than just literature research
- unusual ideas are preferred (but hard to produce)

Course Project

- 1-3 students per project \rightarrow project sizing must be appropriate
- pick from list or propose your own!

Project Proposal

- one page about problem and proposed work
- required infrastructure
- discuss with instructor before submitting proposal