
 3-1CS 755 - Fall 2014

CS 755 – System and Network Architectures
and Implementation

Module 3 - Transport

Martin Karsten

mkarsten@uwaterloo.ca

 3-2CS 755 - Fall 2014

Notice

Some slides and elements of slides are taken
from third-party slide sets. In this module, parts
are taken from the Kurose/Ross slide set. See
detailed statement on next slide...

 3-3CS 755 - Fall 2014

A note on the use of these ppt slides:
We’re making these slides freely available to all (faculty, students, readers). They’re
in PowerPoint form so you can add, modify, and delete slides (including this one)
and slide content to suit your needs. They obviously represent a lot of work on our
part. In return for use, we only ask the following:
 If you use these slides (e.g., in a class) in substantially unaltered form, that you
mention their source (after all, we’d like people to use our book!)
 If you post any slides in substantially unaltered form on a www site, that you note
that they are adapted from (or perhaps identical to) our slides, and note our
copyright of this material.

Thanks and enjoy! JFK/KWR

All material copyright 1996-2009
J.F Kurose and K.W. Ross, All Rights Reserved

Computer Networking: A
Top Down Approach
5th edition.
Jim Kurose, Keith Ross
Addison-Wesley, April
2009.

 3-4CS 755 - Fall 2014

Overview

● multiplexing, virtual channel
● reliable transmission
● flow and congestion control
● connection management and semantics

 3-5CS 755 - Fall 2014

Networks – Review

● network graph
● goal: facilitate any-to-any communication

● main concerns
● routing
● addressing
● scalability

● virtualization

 3-6CS 755 - Fall 2014

Transport

● virtual channel
● end-to-end transmission performance

● reliable transmission
● rate control

● connection management

 3-7CS 755 - Fall 2014

Hop by Hop vs. End to End?

● some services only hop by hop
● delay control
● throughput guarantees

● others also end to end
● multiplexing
● loss control – reliable transmission
● rate control

● principle: if possible, use end to end

 3-8CS 755 - Fall 2014

Multiplexing

● multiple logical sessions over same channel
● here: IP connectivity provides “virtual channel”
● transport session also provides “virtual channel”
● multiplexing

● encapsulation / stacking of multiplex label

● demultiplexing
● forwarding according to multiplex label
● decapsulation / remove multiplex label

 3-9CS 755 - Fall 2014

Multiplexing

● Internet addressing convention:
● IP address – network node address
● transport port – transport session identifier

● Other Approaches
● virtual circuit – integrated with network layer
● hop-by-hop transport service
● session identified locally by virtual circuit identifier

 3-10CS 755 - Fall 2014

Layered Service

app
transport
network
data link
physical

app
transport
network
data link
physical

logical end-end transport

app
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

app
transport
network
data link
physical

logical end-end transport

 3-11CS 755 - Fall 2014

Operating System Integration

● OS implements transport protocol
● handles asynchronous execution
● provides send/receive queue at socket

– socket: named communication endpoint

● OS system calls
● create/remove sockets
● establish names, connections
● send/receive data

 3-12CS 755 - Fall 2014

Multiplexing – Multiple Sockets

host 1

application

transport

network

link

physical

P1 application

transport

network

link

physical

application

transport

network

link

physical

P2P3 P4P1

host 2 host 3

= process= socket

 3-13CS 755 - Fall 2014

Multiplexing – Single Socket

Client
IP:B

P2

client
 IP: A

P1P1P3

server
IP: C

SP: 6428

DP: 9157

SP: 9157

DP: 6428

SP: 6428

DP: 5775

SP: 5775

DP: 6428

SP provides “return address”

 3-14CS 755 - Fall 2014

Multiplexing – Multiple Connections

Client
IP:B

P1

client
 IP: A

P1P2

server
IP: C

SP: 9157

DP: 80

SP: 9157

DP: 80

P5 P3

D-IP:C
S-IP: A

D-IP:C

S-IP: B

SP: 5775

DP: 80

D-IP:C
S-IP: B

 3-15CS 755 - Fall 2014

Reliable Transmission

● use acknowledgements to indicate receipt
● sender knows data has been received
● BUT: two-army problem

● look at functionality first, then performance

 3-16CS 755 - Fall 2014

Principles of Reliable data transfer

● important in application, transport, link layers
● top-10 list of important networking topics!

● characteristics of unreliable channel will determine complexity of
reliable data transfer protocol (rdt)

 3-17CS 755 - Fall 2014

Principles of Reliable data transfer

● important in app., transport, link layers
● top-10 list of important networking topics!

● characteristics of unreliable channel will determine complexity of
reliable data transfer protocol (rdt)

 3-18CS 755 - Fall 2014

Principles of Reliable data transfer

● important in app., transport, link layers
● top-10 list of important networking topics!

● characteristics of unreliable channel will determine complexity of
reliable data transfer protocol (rdt)

 3-19CS 755 - Fall 2014

Reliable data transfer: getting started

send
side

receive
side

rdt_send(): called from above,
(e.g., by app.). Passed data to
deliver to receiver upper layer

udt_send(): called by rdt,
to transfer packet over

unreliable channel to receiver

rdt_rcv(): called when packet
arrives on rcv-side of channel

deliver_data(): called by rdt
to deliver data to upper layer

 3-20CS 755 - Fall 2014

Reliable data transfer: getting started

We’ll:
● incrementally develop sender, receiver sides of

reliable data transfer protocol (rdt)
● consider only unidirectional data transfer

● but control info will flow on both directions!
● use finite state machines (FSM) to specify sender,

receiver

state
1

state
2

event causing state transition
actions taken on state transition

state: when in this
“state” next state

uniquely determined
by next event

event

actions

 3-21CS 755 - Fall 2014

Rdt1.0: reliable transfer over a reliable channel

● underlying channel perfectly reliable
● no bit errors
● no loss of packets

● separate FSMs for sender, receiver:
● sender sends data into underlying channel
● receiver read data from underlying channel

Wait for
call from
above packet = make_pkt(data)

udt_send(packet)

rdt_send(data)

extract (packet,data)
deliver_data(data)

Wait for
call from

below

rdt_rcv(packet)

sender receiver

 3-22CS 755 - Fall 2014

Rdt2.0: channel with bit errors

● underlying channel may flip bits in packet
● checksum to detect bit errors

● the question: how to recover from errors:
● acknowledgements (ACKs): receiver explicitly tells sender that pkt

received OK
● negative acknowledgements (NAKs): receiver explicitly tells sender

that pkt had errors
● sender retransmits pkt on receipt of NAK

● new mechanisms in rdt2.0 (beyond rdt1.0):
● error detection
● receiver feedback: control msgs (ACK,NAK) rcvr->sender

 3-23CS 755 - Fall 2014

rdt2.0: FSM specification

Wait for call
from above

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) &&
 notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
 isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&
 corrupt(rcvpkt)

Wait for
ACK or

NAK

Wait for call
from below

sender

receiver
rdt_send(data)



 3-24CS 755 - Fall 2014

rdt2.0: operation with no errors

Wait for call
from above

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) &&
 notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
 isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&
 corrupt(rcvpkt)

Wait for
ACK or

NAK

Wait for call
from below

rdt_send(data)



 3-25CS 755 - Fall 2014

rdt2.0: error scenario

Wait for call
from above

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) &&
 notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
 isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&
 corrupt(rcvpkt)

Wait for
ACK or

NAK

Wait for call
from below

rdt_send(data)



 3-26CS 755 - Fall 2014

rdt2.0 has a fatal flaw!

What happens if ACK/NAK
corrupted?

● sender doesn’t know what
happened at receiver!

● can’t just retransmit: possible
duplicate

Handling duplicates:
● sender retransmits current pkt if

ACK/NAK garbled
● sender adds sequence number

to each pkt
● receiver discards (doesn’t

deliver up) duplicate pkt

Sender sends one packet,
then waits for receiver
response

stop and wait

 3-27CS 755 - Fall 2014

rdt2.1: sender, handles garbled ACK/NAKs

Wait for call
0 from
above

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_send(data)

Wait for ACK
or NAK 0 udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isNAK(rcvpkt))

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)

rdt_send(data)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isNAK(rcvpkt))

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt)

Wait for
 call 1 from

above

Wait for
ACK or
NAK 1




 3-28CS 755 - Fall 2014

rdt2.1: receiver, handles garbled ACK/NAKs

Wait for
0 from
below

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
 not corrupt(rcvpkt) &&
 has_seq0(rcvpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
 && has_seq1(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

Wait for
1 from
below

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
 && has_seq0(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
 not corrupt(rcvpkt) &&
 has_seq1(rcvpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

 3-29CS 755 - Fall 2014

rdt2.1: discussion

Sender:
● seq # added to pkt
● two seq. #’s (0,1) will

suffice. Why?
● must check if received

ACK/NAK corrupted
● twice as many states

● state must “remember”
whether “current” pkt has 0
or 1 seq. #

Receiver:
● must check if received

packet is duplicate
● state indicates whether 0 or

1 is expected pkt seq #
● note: receiver can not

know if its last ACK/NAK
received OK at sender

 3-30CS 755 - Fall 2014

rdt2.2: a NAK-free protocol

● same functionality as rdt2.1, using ACKs only
● instead of NAK, receiver sends ACK for last pkt received OK

● receiver must explicitly include seq # of pkt being ACKed
● duplicate ACK at sender results in same action as NAK:

retransmit current pkt

 3-31CS 755 - Fall 2014

rdt2.2: sender, receiver fragments

Wait for call
0 from
above

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_send(data)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
 isACK(rcvpkt,1))

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,0)

Wait for
ACK

0

sender FSM
fragment

Wait for
0 from
below

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
 && has_seq1(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK1, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
 (corrupt(rcvpkt) ||
 has_seq1(rcvpkt))

udt_send(sndpkt)

receiver FSM
fragment



 3-32CS 755 - Fall 2014

rdt3.0: channels with errors and loss

New assumption: underlying
channel can also lose
packets (data or ACKs)

● checksum, seq. #, ACKs,
retransmissions will be of
help, but not enough

Approach: sender waits
“reasonable” amount of time
for ACK

● retransmits if no ACK received in
this time

● if pkt (or ACK) just delayed (not
lost):

● retransmission will be
duplicate, but use of seq. #’s
already handles this

● receiver must specify seq # of
pkt being ACKed

● requires countdown timer

 3-33CS 755 - Fall 2014

rdt3.0 sender

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)
start_timer

rdt_send(data)

Wait
for

ACK0

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isACK(rcvpkt,1))

Wait for
call 1 from

above

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)
start_timer

rdt_send(data)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,0)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isACK(rcvpkt,0))

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,1)

stop_timer
stop_timer

udt_send(sndpkt)
start_timer

timeout

udt_send(sndpkt)
start_timer

timeout

rdt_rcv(rcvpkt)

Wait for
call 0 from

above

Wait
for

ACK1



rdt_rcv(rcvpkt)







 3-34CS 755 - Fall 2014

rdt3.0 in action

 3-35CS 755 - Fall 2014

rdt3.0 in action

 3-36CS 755 - Fall 2014

Performance of rdt3.0

● rdt3.0 works, but performance stinks
● example: 1 Gbps link, 15 ms prop. delay, 8000 bit packet:

 U sender: utilization – fraction of time sender busy sending

U
sender

=
.008

30.008
= 0.00027

microsec
onds

L / R

RTT + L / R
=

 1KB pkt every 30 msec -> 33kB/sec thruput over 1 Gbps link
 network protocol limits use of physical resources!

dsmicrosecon8
bps10

bits8000
9


R

L
dtrans

 3-37CS 755 - Fall 2014

rdt3.0: stop-and-wait operation

first packet bit transmitted, t = 0

sender receiver

RTT

last packet bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next
packet, t = RTT + L / R

U
sender

=
.008

30.008
= 0.00027

microsec
onds

L / R

RTT + L / R
=

 3-38CS 755 - Fall 2014

Pipelined protocols

Pipelining: sender allows multiple, “in-flight”, yet-to-be-
acknowledged pkts

● range of sequence numbers must be increased
● buffering at sender and/or receiver

● Two generic forms of pipelined protocols: go-Back-N, selective
repeat

 3-39CS 755 - Fall 2014

Pipelining: increased utilization

first packet bit transmitted, t = 0

sender receiver

RTT

last bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next
packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

U
sender

=
.024

30.008
= 0.0008

microsecon
ds

3 * L / R

RTT + L / R
=

Increase utilization
by a factor of 3!

 3-40CS 755 - Fall 2014

Pipelining Protocols

Go-back-N: overview
● sender: up to N unACKed

pkts in pipeline
● receiver: only sends

cumulative ACKs
● doesn’t ACK pkt if there’s a

gap
● sender: has timer for

oldest unACKed pkt
● if timer expires: retransmit

all unACKed packets

Selective Repeat: overview
● sender: up to N unACKed

packets in pipeline
● receiver: ACKs individual pkts
● sender: maintains timer for

each unACKed pkt
● if timer expires: retransmit only

unACKed packet

 3-41CS 755 - Fall 2014

Go-Back-N
Sender:

● k-bit seq # in pkt header
● “window” of up to N, consecutive unACKed pkts allowed

 ACK(n): ACKs all pkts up to, including seq # n - “cumulative ACK”
 may receive duplicate ACKs (see receiver)

 timer for each in-flight pkt
 timeout(n): retransmit pkt n and all higher seq # pkts in window

 3-42CS 755 - Fall 2014

GBN: sender extended FSM

if (nextseqnum < base+N) {
 sndpkt[nextseqnum] = make_pkt(nextseqnum,data,chksum)
 udt_send(sndpkt[nextseqnum])
 if (base == nextseqnum)
 start_timer
 nextseqnum++
 }
else
 refuse_data(data)

Wait
start_timer
udt_send(sndpkt[base])
udt_send(sndpkt[base+1])
…
udt_send(sndpkt[nextseqnum-1])

timeout

rdt_send(data)

base = getacknum(rcvpkt)+1
If (base == nextseqnum)
 stop_timer
 else
 start_timer

rdt_rcv(rcvpkt) &&
 notcorrupt(rcvpkt)

base=1
nextseqnum=1

rdt_rcv(rcvpkt)
 && corrupt(rcvpkt)



 3-43CS 755 - Fall 2014

GBN: receiver extended FSM

ACK-only: always send ACK for correctly-received pkt with
highest in-order seq #

● may generate duplicate ACKs
● need only remember expectedseqnum

● out-of-order pkt:
● discard (don’t buffer) -> no receiver buffering!
● Re-ACK pkt with highest in-order seq #

Wait

udt_send(sndpkt)

default

rdt_rcv(rcvpkt)
 && notcurrupt(rcvpkt)
 && hasseqnum(rcvpkt,expectedseqnum)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(expectedseqnum,ACK,chksum)
udt_send(sndpkt)
expectedseqnum++

expectedseqnum=1
sndpkt =
 make_pkt(expectedseqnum,ACK,chksum)



 3-44CS 755 - Fall 2014

GBN in
action

 3-45CS 755 - Fall 2014

Selective Repeat

● receiver individually acknowledges all correctly received
pkts

● buffers pkts, as needed, for eventual in-order delivery to upper
layer

● sender only resends pkts for which ACK not received
● sender timer for each unACKed pkt

● sender window
● N consecutive seq #’s
● again limits seq #s of sent, unACKed pkts

 3-46CS 755 - Fall 2014

Selective repeat: sender, receiver windows

 3-47CS 755 - Fall 2014

Selective repeat

data from above :
● if next available seq # in

window, send pkt

timeout(n):
● resend pkt n, restart timer

ACK(n) in [sendbase,sendbase+N]:

● mark pkt n as received
● if n smallest unACKed pkt,

advance window base to next
unACKed seq #

sender

pkt n in [rcvbase, rcvbase+N-1]

 send ACK(n)
 out-of-order: buffer
 in-order: deliver (also

deliver buffered, in-order
pkts), advance window to
next not-yet-received pkt

pkt n in [rcvbase-N,rcvbase-1]

 ACK(n)

otherwise:
 ignore

receiver

 3-48CS 755 - Fall 2014

Selective repeat in action

 3-49CS 755 - Fall 2014

Selective repeat:
 dilemma

Example:
● seq #’s: 0, 1, 2, 3
● window size=3

● receiver sees no
difference in two
scenarios!

● incorrectly passes
duplicate data as new in
(a)

Q: what relationship between
seq # size and window
size?

 3-50CS 755 - Fall 2014

Flow Control: TCP

● receive side of TCP
connection has a receive
buffer:

● speed-matching service:
matching send rate to
receiving application’s
drain rate

 app process may be
slow at reading from
buffer

sender won’t overflow
receiver’s buffer by

transmitting too much,
 too fast

flow control

IP
datagrams

TCP data
(in buffer)

(currently)
unused buffer

space

application
process

 3-51CS 755 - Fall 2014

TCP Flow Control: how it works

(suppose TCP receiver discards
out-of-order segments)

● unused buffer space:
= rwnd

= RcvBuffer-[LastByteRcvd -
LastByteRead]

● receiver: advertises
unused buffer space by
including rwnd value in
segment header

● sender: limits # of
unACKed bytes to rwnd

● guarantees receiver’s buffer
doesn’t overflow

IP
datagrams

TCP data
(in buffer)

(currently)
unused buffer

space

application
process

rwnd
RcvBuffer

 3-52CS 755 - Fall 2014

Congestion Control

● decoupled network and transport service:

multiple senders might overwhelm routers

=> packet delay and loss
● certain situations: congestion collapse

● another goal:

“fair” sharing of network resources

 3-53CS 755 - Fall 2014

Overload without Reliability

● one router,
infinite buffers

● no
retransmission

● large delays
● maximum

throughput

unlimited shared
output link buffers

Host A
in : original data

Host B

out

 3-54CS 755 - Fall 2014

Overload with Reliability

● one router, finite buffers
● retransmission of lost packets

finite shared output
link buffers

Host A in : original data

Host B

out

'in : original data, plus
retransmitted data

 3-55CS 755 - Fall 2014

Overload with Reliability

a) perfect send rate

b) finite buffer -> loss & retransmission

c) retransmission too eager (timeout to small)

R/2

R/2
in


ou

t

b.

R/2

R/2
in


ou

t

a.

R/2

R/2
in


ou

t

c.

R/4

 3-56CS 755 - Fall 2014

Circular Bottlenecks

finite shared output
link buffers

Host A
in : original data

Host B

out

'in : original data, plus
retransmitted data

 3-57CS 755 - Fall 2014

Congestion Collapse

● packet drop after upstream bottleneck

=> upstream capacity wasted

H
o
s
t
A

H
o
s
t
B



o

u

t

 3-58CS 755 - Fall 2014

Congestion Control

● senders must control rate to avoid permanent
network overload

● input signals?
● direct feedback from network? overhead!
● indirect feedback through receiver? reaction time!

– TCP congestion control
– use drop or packet marking to indicate overload

 3-59CS 755 - Fall 2014

TCP Congestion Control

● limit depth of pipeline – congestion window
● sending rate (roughly): CongWin / RTT
● adjust CongWin based on network feedback

● sender infers packet loss
– duplicate ACK -> assume light overload
– timeout -> assume severe overload

● adaptation regimes/phases
● slow start: start at very small rate, increase fast
● congestion avoidance: hold rate, increase slow

 3-60CS 755 - Fall 2014

TCP Slow Start

● start with small fixed
CongWin

● increase exponentially
until first loss
● double CongWin every

RTT, i.e.:
● increment CongWin for

every ACK

● start slow, but
increase fast

Host A

one segment

R
T
T

Host B

time

two segments

four segments

 3-61CS 755 - Fall 2014

TCP Congestion Avoidance

● regular operation (no loss):
increase CongWin by fixed amount per RTT

● receiver detects missing segment
-> send duplicate ACK for previous one

● sender receives 3 duplicate ACKs
-> reduce CongWin in half

● but after sender timeout:
-> restart Slow Start procedure

 3-62CS 755 - Fall 2014

TCP Rate Control

● Slow Start -> Congestion Avoidance
● based on threshold (CongWin/2 of last timeout)

 3-63CS 755 - Fall 2014

TCP Fairness

Two competing sessions:
● Additive increase gives slope of 1, as throughout increases
● multiplicative decrease decreases throughput proportionally

R

R

equal bandwidth share

Connection 1 throughput

C
o
n
n
e
ct

io
n
 2

 t
h
ro

u
g
h
p
u
t

congestion avoidance: additive increase
loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2

 3-64CS 755 - Fall 2014

TCP Discussion

● hybrid of Go-Back-N and Selective Repeat
● SACK: more precise acknowledgements (limited)

● reduction of CongWin -> pause sending
● until ACKs catch up with outstanding data

● refinements
● fast retransmit & fast recovery -> resume sending

faster during dupack losses
● keep sending at ACK-clocked pace

 3-65CS 755 - Fall 2014

TCP Discussion

● TCP fairness relies on configuration values
● initial window for slow start
● additive increase during congestion avoidance

-> problem with highspeed / long-delay links
● more agile congestion control -> robustness?
● per-session fairness?

● lots of other approaches in the literature
● very little real-world adoption

 3-66CS 755 - Fall 2014

Connection Management: TCP

● Connection Establishment: 3-Way Handshake
● Step 1: initiator sends SYN to responder

● sets up initial variables, e.g., sequence number

● Step 2: responder responds with SYNACK
● sets up initial variables, e.g., sequence number
● responder allocates internal buffer

● Step 3: initiator responds with ACK
● might already send data along

 3-67CS 755 - Fall 2014

Connection Management: TCP

● Connection Teardown –
Be Aware of Reliability!

● Step 1: client sends
TCP FIN to server

● Step 2: server responds
with ACK & sends FIN

● FIN -> no more data
● ACK -> all data received

client

FIN

server

ACK

ACK

FIN

close

close

closed
ti

m
e
d
 w

a
it

 3-68CS 755 - Fall 2014

Connection Management: TCP

● Step 3: client
responds with ACK
● enters “TIMED WAIT”
● in case ACK is lost

● Step 4: server
receives ACK
● connection closed

client

FIN

server

ACK

ACK

FIN

closing

closing

closed
ti

m
e
d
 w

a
it

closed

 3-69CS 755 - Fall 2014

Interface Semantics

● message interface
● message boundaries preserved across transport

● byte-stream interface
● message boundaries not preserved
● simpler and more flexible for implementation

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Principles of Reliable data transfer
	Slide 17
	Slide 18
	Reliable data transfer: getting started
	Slide 20
	Rdt1.0: reliable transfer over a reliable channel
	Rdt2.0: channel with bit errors
	rdt2.0: FSM specification
	rdt2.0: operation with no errors
	rdt2.0: error scenario
	rdt2.0 has a fatal flaw!
	rdt2.1: sender, handles garbled ACK/NAKs
	rdt2.1: receiver, handles garbled ACK/NAKs
	rdt2.1: discussion
	rdt2.2: a NAK-free protocol
	rdt2.2: sender, receiver fragments
	rdt3.0: channels with errors and loss
	rdt3.0 sender
	rdt3.0 in action
	Slide 35
	Performance of rdt3.0
	rdt3.0: stop-and-wait operation
	Pipelined protocols
	Pipelining: increased utilization
	Pipelining Protocols
	Go-Back-N
	GBN: sender extended FSM
	GBN: receiver extended FSM
	GBN in action
	Selective Repeat
	Selective repeat: sender, receiver windows
	Selective repeat
	Selective repeat in action
	Selective repeat: dilemma
	TCP Flow Control
	TCP Flow control: how it works
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Why is TCP fair?
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69

