

Presenter: Nian Ke David R . Cheriton School of Computer Science University of Waterloo

MapReduce: Simplified Data Processing on Large Clusters

Outline

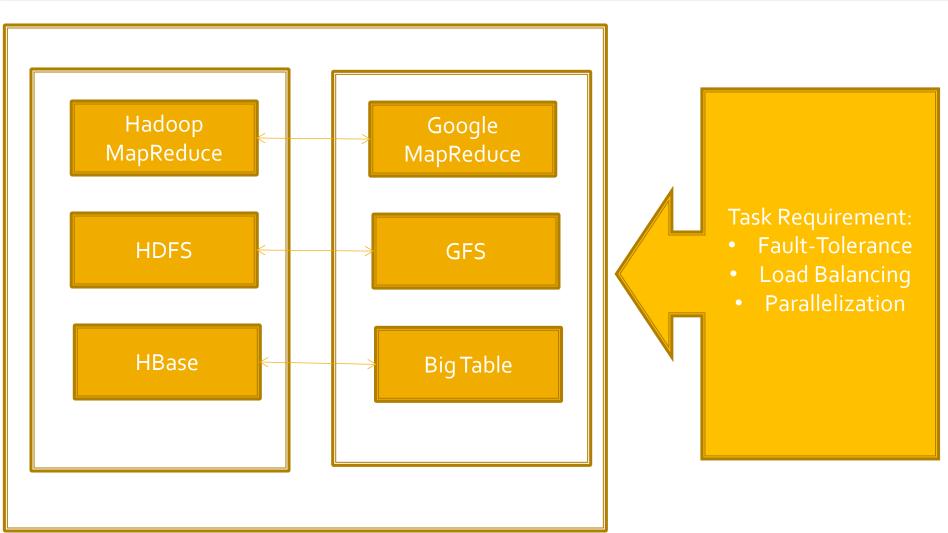
- Background
- Overview of MapReduce Framework
- Implementation Details
- Extending MapReduce: Spark Project

Background

How everything starts?

- Problems for Google:
 - How to store the big data set over commodity computers
 - Google File System(GFS)
 - BigTable
 - Megastore
 - How to efficiently compute the results with distributed file systems
 - MapReduce Framework

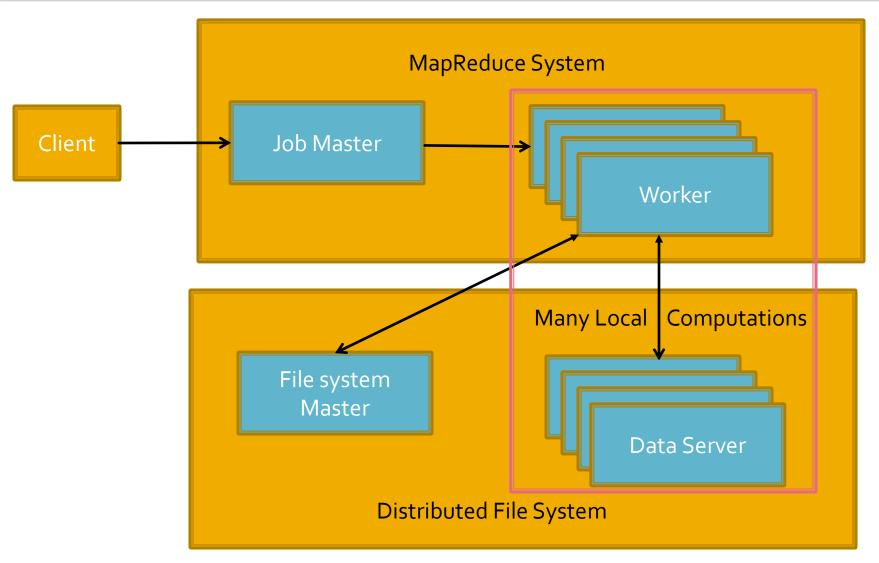
Computational Framework



Advantages of MapReduce

- Automatic parallelization & distribution
- Fault tolerance
- Automatic scheduling and load balancing

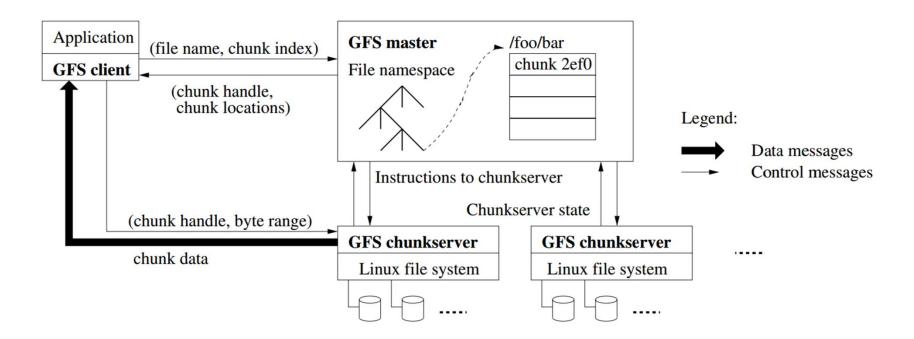
Overall Framework



Overview of MapReduce Framework

Distributed File Systems

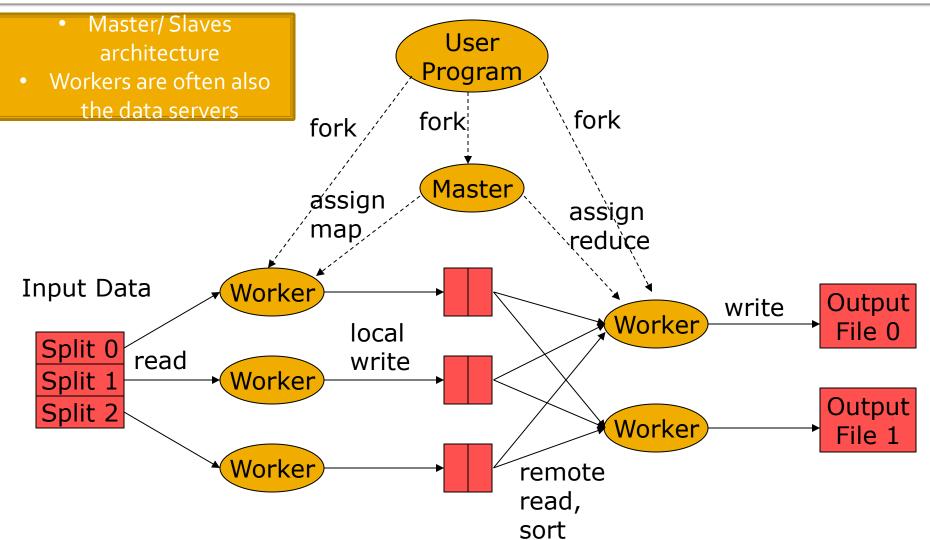
- Master/ Slaves architecture
- Files are divided into chunks (small size)
- Chunks are distributed over multiple computers
 - Replication of chunks is adopted



Functions in the Model

- Map
 - Process a key/value pair to generate intermediate key/value pairs
- Reduce
 - Merge all intermediate values associated with the same key
- Partition
 - By default: hash(key) mod R
 - Well balanced

MapReduce Framework

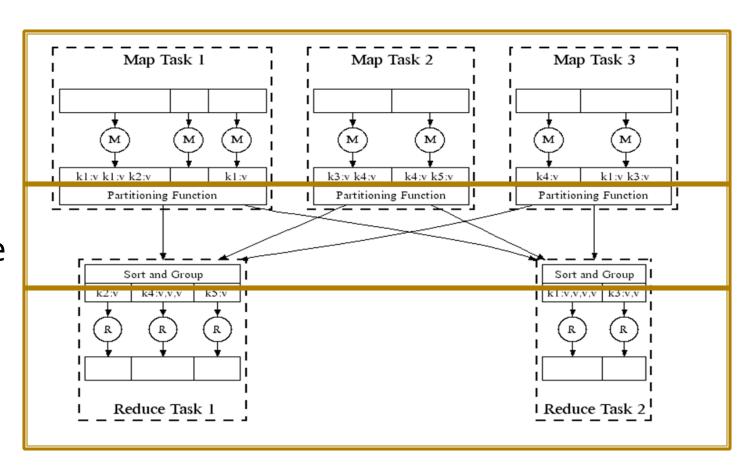


MapReduce Framework

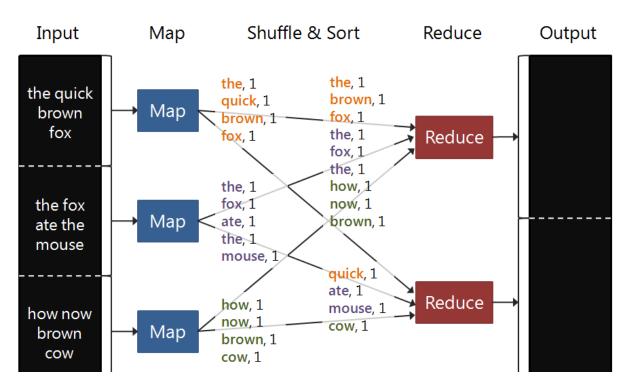
Map Stage

Shuffle Stage

Reduce Stage



Example: Word Count



```
map(String key, String value):
    // key: document name
    // value: document contents
    for each word w in value:
        EmitIntermediate(w, "1");
```

```
reduce(String key, Iterator values
// key: a word
// values: a list of counts
int result = 0;
for each v in values:
   result += ParseInt(v);
Emit(AsString(result));
```


Implementation Details

Coordination And Scheduling

- Master data structures
 - Task status: (idle, in-progress, completed)
 - Finished map tasks send the info of the intermediate files to master
 - The info of the intermediate files are pushed to the in-progress reduce tasks.

- Master scheduling policy
 - Read local replicas, if possible
 - Map tasks scheduled so GFS input block replicas are on same machine or close to the machine
- Effect
 - Thousands of machines read input at local disk

How many Map and Reduce jobs?

Make M and R much larger than the number of nodes in cluster

- One GFS chunk per map is common
- Improves dynamic load balancing and speeds up recovery from worker failure
- Usually R is smaller than M

Combiners

- Too many key/value pairs for the same key k
 - E.g., popular words in Word Count
- Pre-aggregating at mapper-Combiners
 - Usually same as reduce function
- Works only if reduce function is commutative and associative

Fault Tolerance (1)

Handling Failures

- Worker failure
 - Heartbeat, Workers are periodically pinged by master
 - NO response = failed worker
 - If the processor of a worker fails, the tasks of that worker are reassigned to another worker.

Master failure

- Master writes periodic checkpoints
- Another master can be started from the last state
- If eventually the master dies, the job will be aborted

Fault Tolerance (2)

- Handling Stragglers
 - Slow workers
 - Other jobs consuming resources on machine
 - Bad disks, software errors and so on
 - When computation almost done, reschedule inprogress tasks
 - Whenever either the primary or the backup executions finishes, mark it as completed

Extending MapReduce

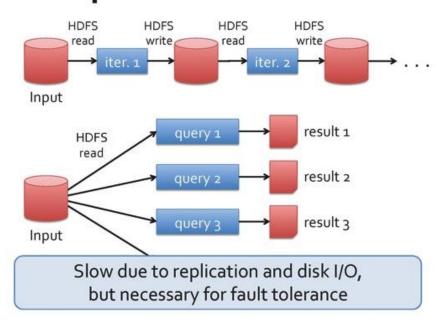
Spark Project

Disadvantages of MapReduce

UNIVERSITY OF WATERLOO

- Limited choice of transformation.
- Not suitable for interactive task.
- Not suitable for iterative multi-stage process.

Examples

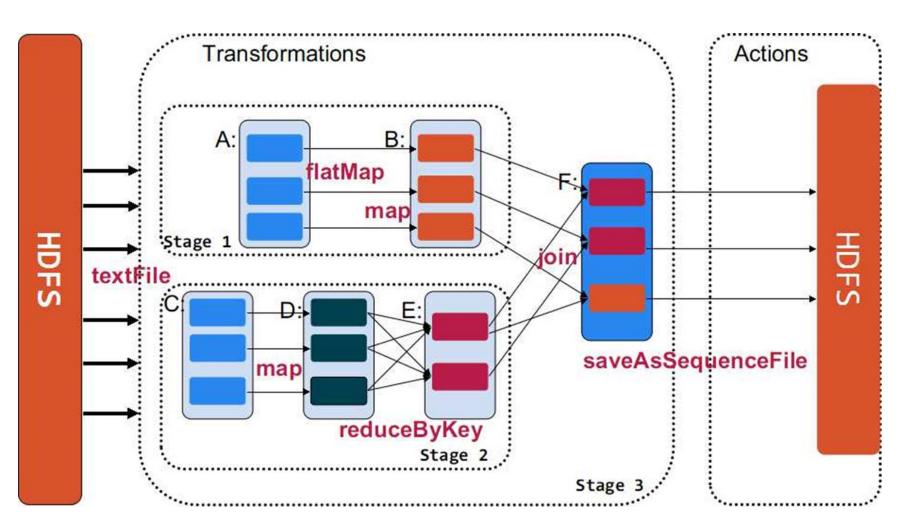


Spark: iterative MapReduce

- In memory computation:
 - Resilient Distributed Dataset(RDD)

- Support more transformation models than MapRduece
- Give users more control over the intermediate process
- Can coexist with Hadoop framework

Spark: iterative MapReduce



Conclusion

- MapReduce: powerful abstraction for parallel computation
 - Elicit many similar framework for parallel computation such as Spark project.
- Spark try to overcome the drawbacks of original MapReduce framework

