
Presenter: Nian Ke
David R . Cheriton School of Computer Science
University of Waterloo

 Background

 Overview of MapReduce Framework

 Implementation Details

 Extending MapReduce: Spark Project

 Problems for Google:

 How to store the big data set over commodity
computers

▪ Google File System(GFS)

▪ BigTable

▪ Megastore

 How to efficiently compute the results with
distributed file systems

▪ MapReduce Framework

Hadoop
MapReduce

HDFS

HBase

Google
MapReduce

GFS

Big Table

Task Requirement:
• Fault-Tolerance
• Load Balancing
• Parallelization

 Automatic parallelization & distribution

 Fault tolerance

 Automatic scheduling and load balancing

Client Job Master

Worker

File system
Master

Data Server

MapReduce System

Distributed File System

Many Local Computations

• Master/ Slaves architecture
• Files are divided into chunks (small size)

• Chunks are distributed over multiple computers
• Replication of chunks is adopted

 Map

 Process a key/value pair to generate intermediate
key/value pairs

 Reduce

 Merge all intermediate values associated with the
same key

 Partition
 By default : hash(key) mod R

 Well balanced

• Master/ Slaves
architecture

• Workers are often also
the data servers

User
Program

Worker

Worker

Master

Worker

Worker

Worker

fork fork fork

assign
map

assign
reduce

read
local
write

Output
File 0

Output
File 1

write

Split 0

Split 1

Split 2

Input Data

remote
read,
sort

Map Stage

Shuffle Stage

Reduce Stage

 Master data structures

 Task status: (idle, in-progress, completed)

 Finished map tasks send the info of the
intermediate files to master

 The info of the intermediate files are pushed to
the in-progress reduce tasks.

 Master scheduling policy

 Read local replicas, if possible

 Map tasks scheduled so GFS input block replicas are on
same machine or close to the machine

 Effect
 Thousands of machines read input at local disk

 Make M and R much larger than the number
of nodes in cluster

 One GFS chunk per map is common

 Improves dynamic load balancing and speeds
up recovery from worker failure

 Usually R is smaller than M

 Too many key/value pairs for the same key k
 E.g., popular words in Word Count

 Pre-aggregating at mapper-Combiners

 Usually same as reduce function

 Works only if reduce function is commutative
and associative

 Handling Failures
 Worker failure

▪ Heartbeat, Workers are periodically pinged by master
▪ NO response = failed worker

▪ If the processor of a worker fails, the tasks of that
worker are reassigned to another worker.

 Master failure
▪ Master writes periodic checkpoints

▪ Another master can be started from the last state

▪ If eventually the master dies, the job will be aborted

 Handling Stragglers
 Slow workers

▪ Other jobs consuming resources on machine

▪ Bad disks, software errors and so on

 When computation almost done, reschedule in-
progress tasks

 Whenever either the primary or the backup
executions finishes, mark it as completed

Spark Project

 Limited choice of
transformation.

 Not suitable for
interactive task.

 Not suitable for
iterative multi-stage
process.

 In memory computation:
 Resilient Distributed Dataset(RDD)

 Support more transformation models than

MapRduece

 Give users more control over the intermediate
process

 Can coexist with Hadoop framework

 MapReduce: powerful abstraction for parallel
computation

 Elicit many similar framework for parallel
computation such as Spark project.

 Spark try to overcome the drawbacks of

original MapReduce framework

