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 Problems for Google: 

 How to store the big data set over commodity 
computers  

▪ Google File System(GFS) 

▪ BigTable 

▪ Megastore 

 How to efficiently compute the results with 
distributed file systems 

▪ MapReduce Framework 
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Task Requirement: 
• Fault-Tolerance 
• Load Balancing 
• Parallelization 

 



 
 Automatic parallelization & distribution 

 
 Fault tolerance 

 
 Automatic scheduling and load balancing 
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• Master/ Slaves architecture  
• Files are divided into chunks (small size)  

• Chunks are distributed over multiple computers 
• Replication of chunks is adopted 



 Map 

 Process a key/value pair to generate intermediate 
key/value pairs 

 Reduce 

 Merge all intermediate values associated with the 
same key 

 Partition 
 By default : hash(key) mod R 

 Well balanced 



• Master/ Slaves 
architecture  

• Workers are often also  
the data servers 
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 Master data structures 

 Task status: (idle, in-progress, completed) 

 Finished map tasks send the info of the 
intermediate files to master 

 The info of the intermediate files are pushed to 
the in-progress reduce tasks. 

 
 



 Master scheduling policy  

 Read local replicas, if possible 

 Map tasks scheduled so GFS input block replicas are on 
same machine or close to the machine  

 Effect  
 Thousands of machines read input at local disk 



 Make M and R much larger than the number 
of nodes in cluster 
 

 One GFS chunk per map is common 
 

 Improves dynamic load balancing and speeds 
up recovery from worker failure 
 

 Usually R is smaller than M 
 

 



 Too many key/value pairs for the same key k 
 E.g., popular words in Word Count 

 
 Pre-aggregating at mapper-Combiners 

 Usually same as reduce function 
 

 Works only if reduce function is commutative 
and associative 



 Handling Failures 
 Worker failure 

▪ Heartbeat, Workers are periodically pinged by master 
▪ NO response = failed worker 

▪ If the processor of a worker fails, the tasks of that 
worker are reassigned to another worker. 

 

 Master failure 
▪ Master writes periodic checkpoints 

▪ Another master can be started from the last state 

▪ If eventually the master dies, the job will be aborted 



 Handling Stragglers 
 Slow workers 

▪ Other jobs consuming resources on machine 

▪ Bad disks, software errors and so on 

 

 When computation almost done, reschedule in-
progress tasks 

 

 Whenever either the primary or the backup 
executions finishes, mark it as completed 

 



Spark Project 



 Limited choice of  
transformation. 

 Not suitable for 
interactive task. 

 Not suitable for 
iterative multi-stage 
process.  

 
 



 In memory computation: 
 Resilient Distributed Dataset(RDD) 

 
 Support more transformation models than 

MapRduece 
 

 Give users more control over the intermediate 
process 
 

 Can coexist with Hadoop framework 
 

 





 MapReduce: powerful abstraction for parallel 
computation 

 Elicit many similar framework for parallel 
computation such as Spark project. 

 
 Spark try to overcome the drawbacks of 

original MapReduce framework 




