EEEEEEE B e e e N
S s . =\ " B L o e
:F--‘ -rv=7~ A.-—l - |3 i i 1 \ - - o 1 " .‘
EEEigel FEEEE S TEE R . ‘- A
. _;L_-;-_ :w:ﬁ _L_ Ll : s
_—-h——l—‘ — _.l"_: :
=

Presenter: Ni
David R . Cheri
University of Wat

MapReduce: Simplified Data
Processing on Large Clusters

Outline

= Background
= Overview of MapReduce Framework
= Implementation Details

= Extending MapReduce: Spark Project

UNIVERSITY OF

WATERLOO

How everything starts?

= Problems for Google:

= How to store the big data set over commodity
computers
= Google File System(GFS)
= BigTable
= Megastore

= How to efficiently compute the results with
distributed file systems

= MapReduce Framework

Hadoop
MapReduce MapReduce

Task Requirement:
* Fault-Tolerance
* Load Balancing
* Parallelization

Big Table

™

Advantages of MapReduce

= Automatic parallelization & distribution
= Fault tolerance

= Automatic scheduling and load balancing

Client Job Master

File system
Master

Data Server

UNIVERSITY OF

WATERLOO

* Master/ Slaves architecture
* Files are divided into chunks (small size)
* Chunks are distributed over multiple computers
* Replication of chunks is adopted

Application (file name, chunk index) _ GFS master o~ /foo/bar
GFS client | File namespace ,~ | chunk 2ef0
(chunk handle, /
chunk locations) Legend:
mmm) Data messages
! Instructions to chunkserver ! " Control messages
(chunk handle, byte range) 1|V ClmERERED St Y

GFS chunkserver GFS chunkserver
Linux file system Linux file system

89 - B9 ..

chunk data

Functions in the Model

= Map
= Process a key/value pair to generate intermediate

key/value pairs
= Reduce

= Merge all intermediate values associated with the
same key
= Partition

= By default: hash (key) mod R
= Well balanced

MapReduce Framework

 Master/Slaves

architecture
* Workers are often also p \
the data servers “ fork

. assign
~reduce

by

Input Data

p write

=. remote

read,
sort

Map Stage

Shuffle Stage

Reduce Stage

r———— - - - = -

Map Task 3

Example: Word Count

reduce (String key,

Input Map Shuffle & Sort
) the, 1 the, 1
the quick quick, 1 brown, 1
brown brown 1——— fox, 1
fox, 1 the, 1
\\\ fox, 1
the, 1
the, 1 how, 1
fox;1 now, 1
ate the W ate, 1 brown, 1
mouse the-1 \\\\
mouse, 1
///' guick, 1
ate, 1
how now how, 1 mouse, 1
now,1 ——cw i
brown W brown, 1 '
cow cow, 1
map (String key, String wvalue):

// key: document name

// wvalue: document contents
for each word w in value:
EmitIntermediate{(w, "1");

Reduce Output

-

-

Iterator values

// key: a word
// values: a list of counts
int result = 0;

for each v in values:
result += ParselInt (v)};
Emit (AsString (result));

UNIVERSITY OF

WATERLOO

Coordination And Scheduling

= Master data structures
= Task status: (idle, in-progress, completed)

= Finished map tasks send the info of the
intermediate files to master

= The info of the intermediate files are pushed to
the in-progress reduce tasks.

Coordination And Scheduling

= Master scheduling policy
= Read local replicas, if possible

= Map tasks scheduled so GFS input block replicas are on
same machine or close to the machine

« Effect

= Thousands of machines read input at local disk

How many Map and Reduce jobs?

= Make M and R much larger than the number
of nodes in cluster

= One GFS chunk per map is common

= Improves dynamic load balancing and speeds
up recovery from worker failure

= Usually Ris smaller than M

Combiners

= Too many key/value pairs for the same key k
= E.g., popular words in Word Count

= Pre-aggregating at mapper-Combiners
= Usually same as reduce function

= Works only if reduce function is commutative
and associative

Fault lTolerance (1)

= Handling Failures
= Worker failure

= Heartbeat, Workers are periodically pinged by master
= NO response = failed worker

= If the processor of a worker fails, the tasks of that
worker are reassigned to another worker.

= Master failure

= Master writes periodic checkpoints
= Another master can be started from the last state
= If eventually the master dies, the job will be aborted

Fault lTolerance (2)

= Handling Stragglers

= Slow workers
= Other jobs consuming resources on machine
= Bad disks, software errors and so on

= When computation almost done, reschedule in-
progress tasks

= Whenever either the primary or the backup
executions finishes, mark it as completed

UNIVERSITY OF

WATERLOO

Spark Project

Disadvantages of MapReduce

= Limited choice of Examples

transformation. i R . .
= Not suitable for W

interactive task. "

= Not suitable for
iterative multi-stage
process.

result 1

result 2

result 3

Slow due to replication and disk 1/O,
but necessary for fault tolerance

Spark: iterative MapReduce

= In memory computation:
= Resilient Distributed Dataset(RDD) SpQrK
= Support more transformation models than

MapRduece

= Give users more control over the intermediate
process

= Can coexist with Hadoop framework

Conclusion

= MapReduce: powerful abstraction for parallel
computation

= Elicit many similar framework for parallel
computation such as Spark project.

= Spark try to overcome the drawbacks of
original MapReduce framework

