
Internet Indirection
Infrastructure

Ion Stoica, Daniel Adkins, Shelley Zhuang, Scott Shenker, and Sonesh Surana

Presented By

Xiang Gao

Oct 15, 2014

Overview

• Motivation

• Design Overview

• Application

• Additional Design and Performance Issue

• Evaluation

• Comments

Overview

• Motivation

• Design Overview

• Application

• Additional Design and Performance Issue

• Evaluation

• Comments

Motivation

• Original Internet
– Designed for Unicast, point-to-point

• More general communication abstractions are
needed by modern application
– Multicast, Anycast, host mobility

• Solutions so far
– IP Layer:

• Scalability
• Deployment

– Application Layer
• Disjointed, redundant
• Deployment

A typical multicast scheme

Overview

• Motivation

• Design Overview

• Application

• Additional Design and Performance Issue

• Evaluation

• Comments

Design Overview

• Basic model

– Id: A logical identifier.

• Sources send packets to an id.

• Receivers express interest in packets sent to an id.

– Trigger: Inserted by receiver

• Allows receivers to control the routing
– End-hosts can create application level services

– End-hosts have the responsibility for efficient tree
construction

Design Overview

• Match packets (id, data) with triggers (id, addr)
– Id: A logical rendezvous between the sender’s packets

and the receiver’s trigger
• Bits length m, exact-match threshold k, k < m

– Trigger’s idt matches packet’s id iff

– A prefix match of at least k bits

– No other trigger has a longer prefix match

• Efficiently match
– Mapping each identifier to a unique server

– Provide best-effort service on top of IP

Design Overview
• Primitive communication provided

– Mobility: Receiver updates its trigger

– Multicast: seamlessly switch

Design Overview

• Stack of ids
– Packet P = (id1, id2,…, data)

– Trigger T = (id, idstack)

– Operations

– T match P:

– Replace the match id with T’s id stack

– Else:

– Pop id stack until find a match

– Drop the packet if the id stack is empty

Overview

• Motivation

• Design Overview

• Application

• Additional Design and Performance Issue

• Evaluation

• Comments

Application

• Service composition

Application

• Heterogeneous Multicast

Application

• Server Selection

– Load balance:

– set the m-k least significant bits to random
values

– Select closest server

– Server encode its location into the last m-k
least significant bits (e.g., zipcode)

– Sender encode its location into the last m-k
least significant bits

Application

• Large Scale Multicast

Overview

• Motivation

• Design Overview

• Application

• Additional Design and Performance Issue

• Evaluation

• Comments

Additional Design

• Properties of the Overlay

– Chord lookup protocol

– m bits, id space [0, 2m-1]

– Routing table, ith entry of server n contains the
first server that follows n+2i-1

– How to route (O(logN) hops):
– Incoming Id lies between itself and its successor:

– Forward to its successor

– else:

– Lookup the routing table, send it to the preceding server

Additional Design
• Public and Private Triggers

• Public trigger is known by all end-hosts
• Employed for efficiency and security

• Robustness
• End-hosts use periodic refreshing to maintain their

triggers
• If a trigger is lost:

• Eventually be reinserted
• Avoid the failure time:

• Receiver maintains an extra backup trigger, and
sender sends packet with the extra id

• I3 replicate triggers and manage the replicas

Additional Design

• Self-Organizing
• Bootstrapping mechanism for nodes to join the i3
• End-hosts only need to know one single server

• Routing Efficiency
• Reduce the hops:

• Sender caches the i3 server’s IP address
• Triangle routing problem:

• Receivers choose their private triggers such that they are
located on nearby servers

• End-host can sample the identifier space to find ranges of
identifiers that are stored at nearby servers. Use RTT to
probe the range (insert (id, A), then send (id, dummy) to
itself).

Additional Design

• Avoiding Hot Spots
• Spreading triggers
• Where to ?

• Push the trigger to the server most likely to
route the packets matching that trigger

• Try to minimize the state it needs to
maintain(e.g., the predecessor server)

• Scalability
• Suppose n triggers and N servers, each server will

store n/N triggers on the average
• Scale up by adding more servers

Additional Design
• Incremental Deployment

• Transparent to other
nodes

• Legacy Applications
• Proxy on end-hosts:

• Translates between
the applications’ UDP
packets and i3 packets

• Inserts triggers on
behalf of the
applications.

Additional Design

• Security
• Attacks to (id, R):

• Using triggers pointing to end-hosts:
• Eavesdrop: insert (id, X)
• Reflection: insert(id’, R)
• Impersonation: cause R to drop its public trigger

• Form arbitrary topologies with triggers:
• Form a loop by inserting triggers in a cycle
• construct a confluence
• construct a chain of triggers that leads to a dead end

Additional Design

• Security
• Solutions

• Constrained Triggers:
• Define a constraint for a trigger (x,y), such that

choosing x constrains the choice of y or vice
versa.

• Pushback:
• Removing the previous trigger in the chain

cascading when reach a dead end
• Trigger Challenges:

• i3 challenges trigger insertion

Overview

• Motivation

• Design Overview

• Application

• Additional Design and Performance Issue

• Evaluation

• Comments

Evaluation

• Metric
• Latency stretch: the ratio of the inter-node latency on

the network to the inter-node latency on the underlying
IP network.

• Network topologies
• power-law random graph topology

• 5000 Nodes, servers randomly assigned, delay
uniformly distributed in [5, 100)

• transit-stub topology
• 5000 Nodes, 100ms for intra-transit, 10ms for

transit-stub, 1ms for intra-stub domain links.

Evaluation

• A transit-stub topology

http://www.cs.columbia.edu/~hgs/teaching/ais/1998/projects/Panagiotis_Sebos/report.html

Evaluation

• Measure the sample effectiveness

The 90th percentile latency stretch versus number of samples for PLRG
and transit-stub with 5000 nodes.

Evaluation

• End-to-End Latency:

• Measure the

sample

effectiveness

The 90th percentile latency stretch versus number of samples for PLRG
and transit-stub with 5000 nodes.

Evaluation

• Proximity Routing
• Closest finger replica: In addition to each finger, a server

maintains r-1 immediate successors of that finger.

• Closest finger set: To route a packet, server considers only
the closest log2N fingers in terms of network distances
among all its logbN fingers (b < 2).

Evaluation

The 90th percentile latency stretch in the case of (a) a power-law random network
topology with 5000 nodes, and (b) a transit-stub topology with 5000 nodes.
The i3 servers are randomly assigned to all nodes in case (a), and only to the stub
nodes in case (b).

Evaluation

• Performance
• Trigger Insertion

• Maintained in hashtable

• The average and the standard deviation of the trigger
insertion operation over 10,000 insertions are 12.5
and 7.12 μs, respectively. This is mostly the time it
takes the operating system to process the packet and
to hand it to the application.

• Data Packet Forwarding

• As packet size increases, memory copy operations and
pushing the bits through the network dominate
processing time.

Evaluation

Per packet forwarding overhead as a
function of payload packet size.
In this case, the i3 header size is 48
bytes.

Per packet routing overhead as a function
of i3 nodes in the system.
The packet payload size is zero.

Evaluation

• Performance
• Throughput:

• The user throughput in megabits per second increases
as the packet payload increases because the overhead
for headers and processing is roughly the same for
both small and large payloads.

Overview

• Motivation

• Design Overview

• Application

• Additional Design and Performance Issue

• Evaluation

• Comments

Comments

• How to make id unique in global deployment?

• How to constrain long id stack in globally deployed
applications ?

• Since when a lookup fails, the packet will be forwarded to
next server until it is dropped. This seems to be resource
consuming process, and also insecure.

