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What is a Global State?

» “The global state of a distributed
computation is the set of local states of all
individual processes involved in the
computation plus the state of the
communication channels.”




Why is there a need for Global
State?

» Helps solve important class of problem:
Stable Property Detection.

» Examples
- computation has terminated
- system deadlock

- all tokens in a token ring have
disappeared




Problems associated with
determining global states in
distributed systems?

» Distributed systems

- information is spread across multiple
systems

» Local Knowledge

- a process in the computation only know
Its own state




Problems associated with
determining global states in
distributed systems?

» Synchronized recording
— processes do not share common clocks




What is a Snapshot?

» Ex. Group of photographers observing a
panoramic, dynamic scene

» Composite picture should be “Meaningful”
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Model of a Distributed System

» Processes: Finite

» Channels: Finite, infinite buffers, error-free,
ordered delivery (FIFO)
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Model of a Distributed System:
What is an Event?

Event e if defined by:

1.

vr bW N

Process p in which event occurs

State s of p immediately before the event
State s’ of p immediately after the event
Channel c

Message M sent along c

» Defined by 5-tuple <p, s, s’, M, c¢>




Model of a Distributed System:
Single-token conservation system
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Model of a Distributed System:
Non Deterministic Computation
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Snapshot Algorithm

» The global-state recording algorithm is
superimposed on underlying computation
without interfering with the underlying
computation




Snapshot Algorithm:
Single-token system,
Scenario 1 (2 tokens)

global atate: token in p glebal state: 1ﬂhy
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Snapshot Algorithm:
Single-token system,
Scenario 2 (No tokens)
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Snapshot Algorithm

» Inconsistency in 2-token problem
n<n’

» Inconsistency in No token problem
n>n’

» To ensure consistent global state

N =n

n = #messages sent along c before p’s state is recorded
n’ = #messages sent along c before c’s state is recorded




Snapshot Algorithm

» Similarly,

M =m
m = #messages received along c before g’s state is recorded
m’ = #messages received along c before c’s state is recorded

In every state,

N = m

Which implies
n=>m




Snapshot Algorithm:
Marker

» Process p sends special message called
“marker”along c, after the nth message and
before sending further messages

» Marker has no effect on underlying
computation




Snapshot Algorithm

» Marker-Sending Rule for process p:

p sends one marker along c after p records its own state
and before p sends further messages along c

» Marker-Receiving Rule for process q:

if g has not recorded its state

begin q records its state
g records the state c as empty sequence
end

else q records the state of c as the sequence of messages
received along c after g’s state is recorded and
before g receives marker along c




Snapshot Algorithm Overview

» Initiator (process p)
- save its local state
- send marker tokens along channel

» Other processes (process q)

- on receiving first marker, save state and
propagate markers along outgoing
channels

» Terminate algorithm after every process
saves its state




Snapshot Algorithm:
Example

p records global state in S, state A
p sends marker along c

System goes to global state S,, S,, and S; while
marker is in transit

» Marker received by q in global state S;
»  records its state, state D

»  records state c to be empty space
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After recording its state, g sends marker along c

On receiving marker, p records state of ¢’ as
message M’




Snapshot Algorithm:
Example

» Recorded global state S*

» Algorithm is initiated in global state S, and
terminated in global state S;

empty
state A @ ‘@ state D
Ml

» Global state S* is not identical to any of the
global states Sy, Sy, S5, <3




Properties of Snapshot Algorithm

» S* is reachable from initial global states

» Final global state is reachable from S*

» Y(S) — y(S’) for all S’ (stable property
definition)
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