Distributed Snapshots:
Determining Global States
of Distributed Systems

K. Mani Chandy

University of Texas at Austin
Leslie Lamport

Stanford Research Institute

Presented by Prateek Goel
October 29, 2014

About the Authors

» K. Mani Chandy

» University of Texas at Austin

» Now CS Professor at CalTech.

» Proposed new solution to Dining
Philosophers Problem

» Leslie Lamport

» Stanford Research Inst.

» Now with Microsoft Research
» Won Turing Award in 2013

Image Source: Google images and Wikipedia

Interesting Facts

» How the Snapshot Algorithm came to be?
» — Wine and Dine!l!

» Awards

» Edsger W. Dijkstra Prize in Distributed
Computing, 2014

» American Academy of Arts and Sciences,
2014

» ACM SIGOPS Hall of Fame Award, 2013

What is a Global State?

» “The global state of a distributed
computation is the set of local states of all
individual processes involved in the
computation plus the state of the
communication channels.”

Why is there a need for Global
State?

» Helps solve important class of problem:
Stable Property Detection.

» Examples
- computation has terminated
- system deadlock

- all tokens in a token ring have
disappeared

Problems associated with
determining global states in
distributed systems?

» Distributed systems

- information is spread across multiple
systems

» Local Knowledge

- a process in the computation only know
Its own state

Problems associated with
determining global states in
distributed systems?

» Synchronized recording
— processes do not share common clocks

What is a Snapshot?

» Ex. Group of photographers observing a
panoramic, dynamic scene

» Composite picture should be “Meaningful”

Image Source: http://www.upside-down.ca/cherry-oxford.jpg

Model of a Distributed System

» Processes: Finite

» Channels: Finite, infinite buffers, error-free,
ordered delivery (FIFO)

ci
p a | process

G2

C4 C3 channel

Model of a Distributed System:
What is an Event?

Event e if defined by:

1.

vr bW N

Process p in which event occurs

State s of p immediately before the event
State s’ of p immediately after the event
Channel c

Message M sent along c

» Defined by 5-tuple <p, s, s’, M, c¢>

Model of a Distributed System:
Single-token conservation system

in transit

global atate: token in p ﬂll:tl:l-nl state: “'I‘V

Model of a Distributed System:
Non Deterministic Computation

send M ampty
initial el B @ @
state &4 — = empty = T state c
sends M

receive M’
l .

hA

sand M’ @ @ aaaaaaaaaaa S1
initial @ @ . pr— c
recelve M
sends M’

Snapshot Algorithm

» The global-state recording algorithm is
superimposed on underlying computation
without interfering with the underlying
computation

Snapshot Algorithm:
Single-token system,
Scenario 1 (2 tokens)

global atate: token in p glebal state: 1ﬂhy

= —l r' ————————

I

mpty sol Iy m 50l

@0_'0 | —al p_vdo |

l mpty l : empty I

L _ L - |

I _ -

in trans

Snapshot Algorithm:
Single-token system,
Scenario 2 (No tokens)

in transit

glchal state: token in p glﬂbal state: tﬂky
|
|sl 3 tokan ol
H 1 H |
empty empty l

Snapshot Algorithm

» Inconsistency in 2-token problem
n<n’

» Inconsistency in No token problem
n>n’

» To ensure consistent global state

N =n

n = #messages sent along c before p’s state is recorded
n’ = #messages sent along c before c’s state is recorded

Snapshot Algorithm

» Similarly,

M =m
m = #messages received along c before g’s state is recorded
m’ = #messages received along c before c’s state is recorded

In every state,

N = m

Which implies
n=>m

Snapshot Algorithm:
Marker

» Process p sends special message called
“marker”along c, after the nth message and
before sending further messages

» Marker has no effect on underlying
computation

Snapshot Algorithm

» Marker-Sending Rule for process p:

p sends one marker along c after p records its own state
and before p sends further messages along c

» Marker-Receiving Rule for process q:

if g has not recorded its state

begin q records its state
g records the state c as empty sequence
end

else q records the state of c as the sequence of messages
received along c after g’s state is recorded and
before g receives marker along c

Snapshot Algorithm Overview

» Initiator (process p)
- save its local state
- send marker tokens along channel

» Other processes (process q)

- on receiving first marker, save state and
propagate markers along outgoing
channels

» Terminate algorithm after every process
saves its state

Snapshot Algorithm:
Example

p records global state in S, state A
p sends marker along c

System goes to global state S,, S,, and S; while
marker is in transit

» Marker received by q in global state S;
» records its state, state D

» records state c to be empty space

4

4

v Vv v

After recording its state, g sends marker along c

On receiving marker, p records state of ¢’ as
message M’

Snapshot Algorithm:
Example

» Recorded global state S*

» Algorithm is initiated in global state S, and
terminated in global state S;

empty
state A @ ‘@ state D
Ml

» Global state S* is not identical to any of the
global states Sy, Sy, S5, <3

Properties of Snapshot Algorithm

» S* is reachable from initial global states

» Final global state is reachable from S*

» Y(S) — y(S’) for all S’ (stable property
definition)

References

[1] “Distributed Snapshots: Determining Global
States of Distributed Systems, K. Mani Chandy
and Leslie Lamport, ACM Transcations on
Computer Systems, Feb 1985

[2] “Global States of a Distributed System”,
Michael J. Fischer, 1981 IEEE

[3]

http://research.microsoft.com/en-us/um/people/lamport/pubs/pubs.html
http://research.microsoft.com/en-us/um/people/lamport/pubs/pubs.html
http://research.microsoft.com/en-us/um/people/lamport/pubs/pubs.html

Thank youl!

