
K. Mani Chandy
University of Texas at Austin

Leslie Lamport
Stanford Research Institute

Presented by Prateek Goel
October 29, 2014

David R. Cheriton School of Computer Science
University of Waterloo

 K. Mani Chandy
 University of Texas at Austin
 Now CS Professor at CalTech.
 Proposed new solution to Dining
 Philosophers Problem

 Leslie Lamport
 Stanford Research Inst.
 Now with Microsoft Research
 Won Turing Award in 2013

Image Source: Google images and Wikipedia

 How the Snapshot Algorithm came to be?

 → Wine and Dine!!!

 Awards

 Edsger W. Dijkstra Prize in Distributed
Computing, 2014

 American Academy of Arts and Sciences,
2014

 ACM SIGOPS Hall of Fame Award, 2013

 “The global state of a distributed
computation is the set of local states of all
individual processes involved in the
computation plus the state of the
communication channels.”

 Helps solve important class of problem:
Stable Property Detection.

 Examples

 - computation has terminated

 - system deadlock

 - all tokens in a token ring have
 disappeared

 Distributed systems

 - information is spread across multiple
 systems

 Local Knowledge

 - a process in the computation only know
 its own state

 Synchronized recording

 - processes do not share common clocks

 Ex. Group of photographers observing a
panoramic, dynamic scene

 Composite picture should be “Meaningful”

Image Source: http://www.upside-down.ca/cherry-oxford.jpg

 Processes: Finite

 Channels: Finite, infinite buffers, error-free,
ordered delivery (FIFO)

Event e if defined by:

1. Process p in which event occurs

2. State s of p immediately before the event

3. State s’ of p immediately after the event

4. Channel c

5. Message M sent along c

 Defined by 5-tuple <p, s, s’, M, c>

 The global-state recording algorithm is
superimposed on underlying computation
without interfering with the underlying
computation

 Inconsistency in 2-token problem

 n < n’

 Inconsistency in No token problem

 n > n’

 To ensure consistent global state

 n = n’

n = #messages sent along c before p’s state is recorded

n’ = #messages sent along c before c’s state is recorded

 Similarly,

 m = m’
m = #messages received along c before q’s state is recorded

m’ = #messages received along c before c’s state is recorded

In every state,

 n’ ≥ m’

Which implies

 n ≥ m

 Process p sends special message called
“marker” along c, after the nth message and
before sending further messages

 Marker has no effect on underlying
computation

 Marker-Sending Rule for process p:
 p sends one marker along c after p records its own state
 and before p sends further messages along c

 Marker-Receiving Rule for process q:
 if q has not recorded its state

 begin q records its state

 q records the state c as empty sequence

 end

 else q records the state of c as the sequence of messages
 received along c after q’s state is recorded and
 before q receives marker along c

 Initiator (process p)
 - save its local state
 - send marker tokens along channel

 Other processes (process q)
 - on receiving first marker, save state and
 propagate markers along outgoing
 channels

 Terminate algorithm after every process

saves its state

 p records global state in S0, state A

 p sends marker along c

 System goes to global state S1, S2, and S3 while
marker is in transit

 Marker received by q in global state S3

 q records its state, state D

 q records state c to be empty space

 After recording its state, q sends marker along c’

 On receiving marker, p records state of c’ as
message M’

 Recorded global state S*

 Algorithm is initiated in global state S0 and
terminated in global state S3

 Global state S* is not identical to any of the
global states S0, S1, S2, S3

 S* is reachable from initial global states

 Final global state is reachable from S*

 y(S) → y(S’) for all S’ (stable property
definition)

[1] “Distributed Snapshots: Determining Global
States of Distributed Systems, K. Mani Chandy
and Leslie Lamport, ACM Transcations on
Computer Systems, Feb 1985

[2] “Global States of a Distributed System”,
Michael J. Fischer, 1981 IEEE

[3] http://research.microsoft.com/en-
us/um/people/lamport/pubs/pubs.html

http://research.microsoft.com/en-us/um/people/lamport/pubs/pubs.html
http://research.microsoft.com/en-us/um/people/lamport/pubs/pubs.html
http://research.microsoft.com/en-us/um/people/lamport/pubs/pubs.html

