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Notice

Some figures are taken from third-party slide 
sets. In this module, figures are taken from the 
Tanenbaum/van Steen slide set:

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, 
(c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5
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No Clock is Perfect
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Synchronizing Clocks
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Implications
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Event Ordering

● total order needed?
● independent events

● partial order sufficient?
● causal ordering
● happened-before relationship
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Happened Before

● if event a occurs before b in the same process, 
then a → b

● if a is sent event and b is corresponding receive 
event, then a → b

● transitivity: if a → b and b → c, then a → c

● if not(a → b or b → a), then concurrent
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Lamport Clock

● Clock: counter C
i
 for process P

i

1. before each event: C
i
 = C

i
 + 1

2. attach C
i
 to each message m as ts(m)

3. upon receipt of m: C
i
 = max{ C

i
, ts(m) }
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Lamport Clock
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Lamport Clock
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Vector Clock

● Lamport clock captures potential causility
● might impose too strict ordering
● independent events still appear ordered

● Clock: vector V
i
 for process P

i

● V
i
[j]: number of preceedings events at process j

● V
i
[i]: Lamport clock at process i
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Vector Clock

1. before each event: V
i
[i]= V

i
[i] + 1

2. attach V
i
 to each message m as ts(m)

3. upon receipt of m: V
i
[k] = max{ V

i
[k], ts(m)[k] }

for each k

● overhead...
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Vector Clock
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Vector Clock detects potential causality only
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Lamport Clock
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Lamport Clock mandates stricter ordering
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Causally And Totally Odered 
Communication System

● controversy during 1990s
● distributed system middleware
● CATOCS expensive, no transactions
● might not fit application requirements

● current situation
● key/value stores vs. transactional DB systems
● Paxos-type systems for high-level agreement
● causal ordering used where applicable
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