
 7-1CS 755 - Fall 2014

CS 755 – System and Network Architectures 
and Implementation

Module 7 – Ordering

Martin Karsten

mkarsten@uwaterloo.ca



 7-2CS 755 - Fall 2014

Notice

Some figures are taken from third-party slide 
sets. In this module, figures are taken from the 
Tanenbaum/van Steen slide set:

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, 
(c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5



 7-3CS 755 - Fall 2014

No Clock is Perfect



 7-4CS 755 - Fall 2014

Synchronizing Clocks



 7-5CS 755 - Fall 2014

Implications



 7-6CS 755 - Fall 2014

Event Ordering

● total order needed?
● independent events

● partial order sufficient?
● causal ordering
● happened-before relationship



 7-7CS 755 - Fall 2014

Happened Before

● if event a occurs before b in the same process, 
then a → b

● if a is sent event and b is corresponding receive 
event, then a → b

● transitivity: if a → b and b → c, then a → c

● if not(a → b or b → a), then concurrent



 7-8CS 755 - Fall 2014

Lamport Clock

● Clock: counter C
i
 for process P

i

1. before each event: C
i
 = C

i
 + 1

2. attach C
i
 to each message m as ts(m)

3. upon receipt of m: C
i
 = max{ C

i
, ts(m) }



 7-9CS 755 - Fall 2014

Lamport Clock



 7-10CS 755 - Fall 2014

Lamport Clock



 7-11CS 755 - Fall 2014

Vector Clock

● Lamport clock captures potential causility
● might impose too strict ordering
● independent events still appear ordered

● Clock: vector V
i
 for process P

i

● V
i
[j]: number of preceedings events at process j

● V
i
[i]: Lamport clock at process i



 7-12CS 755 - Fall 2014

Vector Clock

1. before each event: V
i
[i]= V

i
[i] + 1

2. attach V
i
 to each message m as ts(m)

3. upon receipt of m: V
i
[k] = max{ V

i
[k], ts(m)[k] }

for each k

● overhead...



 7-13CS 755 - Fall 2014

Vector Clock

0,0,2

1,0,0

3,0,0

3,0,3

2,0,0

Vector Clock detects potential causality only



 7-14CS 755 - Fall 2014

Lamport Clock

2

1

2

3

2

1

Lamport Clock mandates stricter ordering



 7-15CS 755 - Fall 2014

Causally And Totally Odered 
Communication System

● controversy during 1990s
● distributed system middleware
● CATOCS expensive, no transactions
● might not fit application requirements

● current situation
● key/value stores vs. transactional DB systems
● Paxos-type systems for high-level agreement
● causal ordering used where applicable


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Vector Clock
	Lamport Clock
	Slide 15

