Overview

1. Motivation
2. Background
3. Our Model
4. Problem Formulation
5. Results
6. Proof
7. Conclusions and Future Work
Motivation

- There is a huge number of applications for clustering
- Tons of algorithmic choices
 - Clustering algorithm/objective
 - Feature extraction
 - Preprocessing techniques
- Many conflicting outcomes
- How should we select among them?

Domain Knowledge
- How can such knowledge be incorporated into the clustering?
 - Trial and error?
 - Intuitions?
 - A more principled way?
Motivation

- There is a huge number of applications for clustering
- Tons of algorithmic choices
 - Clustering algorithm/objective
 - Feature extraction
 - Preprocessing techniques
- Many conflicting outcomes
- How should we select among them?
 - Domain Knowledge
- How can such knowledge be incorporated into the clustering?
 - Trial and error?
 - Intuitions?
 - A more principled way?
Motivation: Main Challenges

- Is there an automatic/more-principled approach for incorporating task-specific knowledge into clustering?
Motivation: Main Challenges

- Is there an automatic/more-principled approach for incorporating task-specific knowledge into clustering?
- What should be the communication protocol?
 - What should be the communication protocol?
Motivation: Main Challenges

- Is there an automatic/more-principled approach for incorporating task-specific knowledge into clustering?
 - What should be the communication protocol?
 - What should be the learning model?
Motivation: Main Challenges

- Is there an automatic/more-principled approach for incorporating task-specific knowledge into clustering?
 - What should be the communication protocol?
 - What should be the learning model?
 - What kind of algorithm should we use for learning?
Motivation: Main Challenges

- Is there an automatic/more-principled approach for incorporating task-specific knowledge into clustering?
 - What should be the communication protocol?
 - What should be the learning model?
 - What kind of algorithm should we use for learning?
 - What type of guarantees should we expect?
Overview

1 Motivation

2 Background

3 Our Model

4 Problem Formulation

5 Results

6 Proof

7 Conclusions and Future Work
Previous Work: Semi-Supervised Clustering

- Must/cannot-link constraints (Wagstaff et al. (2001))
- Constrained Clustering (E.g., Demiriz et al. (1999))
- Metric Learning (E.g., Xing et al. (2002), Alipanahi, Biggs and Ghodsi (2008))

Issues:
- Heuristic objective functions
- How many constraints do we need?

Property-based Clustering (Ackerman, Ben-David and Loker, 2010)
- Appropriate for selecting the algorithm
- Properties are not yet user-level
Overview

1. Motivation
2. Background
3. Our Model
4. Problem Formulation
5. Results
6. Proof
7. Conclusions and Future Work
Communication Protocol

CLustering with ADvice (CLAD)

1. Take a small random subset of the data
2. Have a domain expert cluster the subset
3. "Learn" a model consistent with that clustering
4. Cluster the rest of data based on the model
Communication Protocol

CLustering with ADvice (CLAD)

1. Take a small random subset of the data
2. Have a domain expert cluster the subset
3. ”Learn” a model consistent with that clustering
4. Cluster the rest of data based on the model

- A natural choice for clustering
- How can we model the task-specific knowledge?
How can we enumerate clustering algorithms?

- Fix a clustering algorithm and search for a suitable notion of representation.
- Find a mapping from the domain to a new space, similar to the metric learning approach, but with a more direct objective: the result of clustering should be consistent with what experts have in mind.
- Is this flexible enough?
- The clustering algorithm should have the richness property: for any partition, there should exist a corresponding mapping.
- E.g., k-means clustering enjoys k-richness.
- How can we avoid overfitting?
- Select the mapping from a specific class of candidate mappings.
How can we *enumerate* clustering algorithms?

Fix a clustering algorithm and search for a suitable notion of representation.
How can we enumerate clustering algorithms?

Fix a clustering algorithm and search for a suitable notion of representation.

- Find a mapping from the domain to a new space
- Similar to the metric learning approach
- With a more direct objective: the result of clustering should be consistent with what expert has in mind

Is this flexible enough?

The clustering algorithm should have the richness property: for any partition, there should exist a corresponding mapping.

E.g., k-means clustering enjoys k-richness.

How can we avoid overfitting?

Select the mapping from a specific class of candidate mappings.
How can we enumerate clustering algorithms?

Fix a clustering algorithm and search for a suitable notion of representation.

- Find a mapping from the domain to a new space
- Similar to the metric learning approach
- With a more direct objective: the result of clustering should be consistent with what expert has in mind

Is this flexible enough?

- The clustering algorithm should have the richness property: for any partition, there should exist a corresponding mapping.
- E.g., k-means clustering enjoys k-richness
How can we enumerate clustering algorithms?

Fix a clustering algorithm and search for a suitable notion of representation.

- Find a mapping from the domain to a new space
- Similar to the metric learning approach
- With a more direct objective: the result of clustering should be consistent with what expert has in mind

Is this flexible enough?

- The clustering algorithm should have the richness property: for any partition, there should exist a corresponding mapping.
 - E.g., \(k \)-means clustering enjoys \(k \)-richness

How can we avoid overfitting?

- Select the mapping from a specific class of candidate mappings
Representation Learning for CLustering with ADvice (ReCLAD)

1. Fix a core clustering method (e.g., k-means)
2. Take a small random subset of the data
3. Have a domain expert cluster the subset
4. Let the algorithm select a mapping (from a class of mappings)
5. Perform clustering in the mapped space

- What kind of guarantee can we expect?
 - We will establish **PAC-type** guarantees.
Overview

1. Motivation
2. Background
3. Our Model
4. Problem Formulation
5. Results
6. Proof
7. Conclusions and Future Work
Definitions

- \(f : X \mapsto \mathbb{R}^d \)
- \(C^f_X \): clustering of \(X \) induced by \(f \)
- \(C^* \): Optimal (unknown) clustering of \(X \)
- Learning algorithm \(A(S, C^*_S) \mapsto \mathcal{F} \)
- The error is the \(\Delta_X(C^*, C^f_X) \) (the difference between \(C^* \) and the clustering induced by \(f_A \))
Definitions II

- f_A is ϵ-optimal when $\Delta_X(C^*, C_{X}^{f_A}) \leq \epsilon$
- Agnostic ϵ-optimality:

$$\Delta_X(C^*, C_{X}^{f_A}) \leq \inf_{f \in \mathcal{F}} \Delta_X(C^*, C_{X}^{f}) + \epsilon$$
Definitions II

- f_A is ϵ-optimal when $\Delta_X(C^*, C_X^{f_A}) \leq \epsilon$
- Agnostic ϵ-optimality:

$$\Delta_X(C^*, C_X^{f_A}) \leq \inf_{f \in \mathcal{F}} \Delta_X(C^*, C_X^f) + \epsilon$$

- Distance between two k-clusterings:

$$\Delta_X(C^1, C^2) = \min_{\sigma \in \pi^k} \frac{1}{|X|} \sum_{i=1}^k |C^1_i \Delta C^2_{\sigma(i)}|$$
A is a PAC-ReCLAD learner for \mathcal{F} with $m_\mathcal{F}$ samples if

For every X and C^*, if S is a randomly (uniformly) selected subset of X of size at least $m_\mathcal{F}(\epsilon, \delta)$, then with probability at least $1 - \delta$

$$\Delta_X(C^*, C_{X}^{f_A}) \leq \inf_{f \in \mathcal{F}} \Delta_X(C^*, C_{X}^{f}) + \epsilon$$

Intuitively, for richer \mathcal{F} we would need more samples. Particularly, can we bound $m_\mathcal{F}(\epsilon, \delta)$ when the core clustering method is k-means?
Problem Formulation - PAC-ReCLAD

PAC Representation Learning for CLustering with ADvice

A is a PAC-ReCLAD learner for \mathcal{F} with $m_\mathcal{F}$ samples if

For every X and C^*, if S is a randomly (uniformly) selected subset of X of size at least $m_\mathcal{F}(\epsilon, \delta)$, then with probability at least $1 - \delta$

$$\Delta_X(C^*, C^A_X) \leq \inf_{f \in \mathcal{F}} \Delta_X(C^*, C^f_X) + \epsilon$$

- Intuitively, for richer \mathcal{F} we would need more samples.
- Particularly, can we bound $m_\mathcal{F}(\epsilon, \delta)$ when the core clustering method is k-means?
Overview

1. Motivation
2. Background
3. Our Model
4. Problem Formulation
5. Results
6. Proof
7. Conclusions and Future Work
We want to bound the sample complexity based on a notion of capacity of \mathcal{F}.

- VC-dimension: the size of the largest shattered set (binary functions).
- Pseudo-dimension: the size of the largest pseudo-shattered set (real-valued functions).
- We have defined a vector-valued version of it.
Uniqueness of Solution Assumption

- k-means’ solution may not be unique for some mappings
- Such mappings should not be selected!

(η, ϵ)-Uniqueness: Every η-optimal solution to k-means’ cost is ϵ-close to the optimal solution

For simplifying the presentation of the results, we assume that the class \mathcal{F} includes only the mappings under which the solution is unique.
Theorem

The sample complexity of representation learning for k-means clustering (PAC-ReKAD) with respect to \mathcal{F} is upper bounded by

$$m_\mathcal{F}(\epsilon, \delta) \leq \mathcal{O}\left(\frac{k + \text{Pdim}(\mathcal{F}) + \log\left(\frac{1}{\delta}\right)}{\epsilon^2}\right)$$

where \mathcal{O} hides logarithmic factors.
Theorem

The sample complexity of representation learning for k-means clustering (PAC-ReKAD) with respect to \mathcal{F} is upper bounded by

$$m_{\mathcal{F}}(\epsilon, \delta) \leq O\left(\frac{k + Pdim(\mathcal{F}) + \log\left(\frac{1}{\delta}\right)}{\epsilon^2}\right)$$

where O hides logarithmic factors.

Corollary

Let \mathcal{F} be a set of linear mappings from \mathbb{R}^{d_1} to \mathbb{R}^{d_2}. Then

$$m_{\mathcal{F}}(\epsilon, \delta) \leq O\left(\frac{k + d_1 d_2 + \log\left(\frac{1}{\delta}\right)}{\epsilon^2}\right)$$
• ReKAD: REPresentation learning for K-means clustering with ADvice
• What kind of algorithm can be a PAC-ReKAD learner?

Transductive Empirical Risk Minimization (TERM)

A TERM learner for \(\mathcal{F} \) takes as input a sample \(S \subset X \) and its clustering \(Y \) and outputs:

\[
A^{TERM}(S, Y) = \arg \min_{f \in \mathcal{F}} \Delta_S(C^f_{X|S}, Y)
\]

• It finds the mapping based on which if you cluster \(X \), the empirical error will be minimized.
Overview

1. Motivation
2. Background
3. Our Model
4. Problem Formulation
5. Results
6. Proof
7. Conclusions and Future Work
Sufficiency of Uniform Convergence

ε-Representative Sample

Sample S is ε-representative with respect to \mathcal{F}, X and the clustering C^*, if for every $f \in \mathcal{F}$ the following holds

$$|\Delta_X(C^*, C_f^X) - \Delta_S(C^*, C_f^X)| \leq \varepsilon$$
Sufficiency of Uniform Convergence

ϵ-Representative Sample

Sample S is ϵ-representative with respect to \mathcal{F}, X and the clustering C^*, if for every $f \in \mathcal{F}$ the following holds

\[|\Delta_X(C^*, C_X^f) - \Delta_S(C^*, C_X^f)| \leq \epsilon \]

Theorem (Sufficiency of Uniform Convergence)

If S is an $\frac{\epsilon}{2}$-representative sample with respect to X, \mathcal{F} and C^* then

\[\Delta_X(C^*, C_X^{\hat{f}}) \leq \Delta_X(C^*, C_X^{f^*}) + \epsilon \]

where $f^* = \arg \min_{f \in \mathcal{F}} \Delta_X(C^*, C_X^f)$ and $\hat{f} = A^{TERM}(S, C^*_S)$.

How large should be the sample so that with high probability it is ϵ_2-representative (Sample complexity of uniform convergence)?

Hassan Ashtiani & Shai Ben-David

Clustering with Advice

December 2015
Sufficiency of Uniform Convergence

ε-Representative Sample

Sample S is ε-representative with respect to \mathcal{F}, X and the clustering C^*, if for every $f \in \mathcal{F}$ the following holds

$$|\Delta_X(C^*, C_X^f) - \Delta_S(C^*, C_X^f)| \leq \varepsilon$$

Theorem (Sufficiency of Uniform Convergence)

If S is an $\varepsilon/2$-representative sample with respect to X, \mathcal{F} and C^* then

$$\Delta_X(C^*, C_{\hat{f}}^X) \leq \Delta_X(C^*, C_{\hat{f}^*}^X) + \varepsilon$$

where $f^* = \arg\min_{f \in \mathcal{F}} \Delta_X(C^*, C_X^f)$ and $\hat{f} = A^{TERM}(S, C^*|_S)$.

How large should be the sample so that with high probability it is $\varepsilon/2$-representative (Sample complexity of uniform convergence)?

Hassan Ashtiani & Shai Ben-David ()

Clustering with Advice

December 2015
Proof of Uniform Convergence: Covering Numbers

- If $|\mathcal{F}| = 1$ then Hoeffding’s inequality says we have uniform convergence.
- For finite classes: we can use union bound.
- For infinite classes?
Proof of Uniform Convergence: Covering Numbers

- If $|\mathcal{F}| = 1$ then Hoeffding’s inequality says we have uniform convergence.
- For finite classes: we can use union bound.
- For infinite classes?
- $\mathcal{N}(\mathcal{F}, d, \epsilon)$ or covering number: Roughly, the number of ϵ-different members of \mathcal{F} with respect to $d(., .)$.
- Δ-distance between two mappings:
 \[
 \Delta_X(f_1, f_2) = \Delta_X(C_{X}^{f_1}, C_{X}^{f_2})
 \]
- L_1 distance between two mappings:
 \[
 d_{L_1}^X(f_1, f_2) = \frac{1}{|X|} \sum_{x \in X} \| f_1(x) - f_2(x) \|_2
 \]
Plan of Attack

1. Bound $m^F(\epsilon, \delta)$ based on $m^F_{UC}(\epsilon, \delta)$
Plan of Attack

1. Bound $m^F(\epsilon, \delta)$ based on $m^F_{UC}(\epsilon, \delta)$
2. Bound the $m^F_{UC}(\epsilon, \delta)$ based on $N(F, \Delta_X, \epsilon)$ and δ
Plan of Attack

1. Bound $m^\mathcal{F}(\epsilon, \delta)$ based on $m^\mathcal{F}_{UC}(\epsilon, \delta)$
2. Bound the $m^\mathcal{F}_{UC}(\epsilon, \delta)$ based on $\mathcal{N}(\mathcal{F}, \Delta_X, \epsilon)$ and δ
3. Bound $\mathcal{N}(\mathcal{F}, \Delta_X, \epsilon)$ based on $\mathcal{N}(\mathcal{F}, d^X_{L_1}, \epsilon)$
Plan of Attack

1. Bound $m^\mathcal{F} (\epsilon, \delta)$ based on $m^\mathcal{F}_{UC} (\epsilon, \delta)$
2. Bound the $m^\mathcal{F}_{UC} (\epsilon, \delta)$ based on $\mathcal{N} (\mathcal{F}, \Delta_X, \epsilon)$ and δ
3. Bound $\mathcal{N} (\mathcal{F}, \Delta_X, \epsilon)$ based on $\mathcal{N} (\mathcal{F}, d^X_{L_1}, \epsilon)$
4. Bound $\mathcal{N} (\mathcal{F}, d^X_{L_1}, \epsilon)$ based on $Pdim (\mathcal{F})$ and ϵ
Plan of Attack

1. Bound $m^\mathcal{F}(\epsilon, \delta)$ based on $m^\mathcal{F}_{UC}(\epsilon, \delta)$
2. Bound the $m^\mathcal{F}_{UC}(\epsilon, \delta)$ based on $\mathcal{N}(\mathcal{F}, \Delta_X, \epsilon)$ and δ
3. Bound $\mathcal{N}(\mathcal{F}, \Delta_X, \epsilon)$ based on $\mathcal{N}(\mathcal{F}, d^X_{L_1}, \epsilon)$
4. Bound $\mathcal{N}(\mathcal{F}, d^X_{L_1}, \epsilon)$ based on $Pdim(\mathcal{F})$ and ϵ
5. Bound $Pdim(\mathcal{F})$
Overview

1 Motivation

2 Background

3 Our Model

4 Problem Formulation

5 Results

6 Proof

7 Conclusions and Future Work
Conclusions

- We proposed a formal framework for exploiting domain knowledge in clustering.
 - Supervision Protocol: CLAD
 - Model: ReCLAD
 - Formal specification: PAC-ReCLAD
- For ReKAD, the sample complexity was bounded based on the pseudo-dimension of the class of mappings.
Conclusions

- We proposed a formal framework for exploiting domain knowledge in clustering.
 - Supervision Protocol: CLAD
 - Model: ReCLAD
 - Formal specification: PAC-ReCLAD
- For ReKAD, the sample complexity was bounded based on the pseudo-dimension of the class of mappings.
- Future Work
 - Provide computationally efficient algorithms
 - Fixed number of clusters
Thank You!
Proof of Uniform Convergence

Lemma

Let \mathcal{F} be a class of mappings with (η, ϵ)-uniqueness property. Then for $f_1, f_2 \in \mathcal{F}$ if

$$d_{L_1}^X(f_1, f_2) < \frac{\eta}{12}$$

then

$$\Delta_X(f_1, f_2) < 2\epsilon$$
Proof of Uniform Convergence

Theorem

Let \mathcal{F} be a class of mappings with (η, ϵ)-uniqueness property. Then

$$m_{\mathcal{F}}^{UC}(\epsilon, \delta) \leq O\left(\frac{\log k! + \log \mathcal{N}(\mathcal{F}, d_{L_1}^X, \frac{\eta}{\alpha})}{\epsilon^2} + \log\left(\frac{1}{\delta}\right)\right)$$
Proof of Uniform Convergence

Theorem

Let \mathcal{F} be a class of mappings with (η, ϵ)-uniqueness property. Then

$$m_{\mathcal{F}}^{UC}(\epsilon, \delta) \leq O\left(\frac{\log k! + \log \mathcal{N}(\mathcal{F}, d_{L_1}^X, \frac{\eta}{\alpha}) + \log(\frac{1}{\delta})}{\epsilon^2}\right)$$

Theorem

Let \mathcal{F} be a class of mappings with (η, ϵ)-uniqueness property. Then

$$m_{\mathcal{F}}^{UC}(\epsilon, \delta) \leq O\left(\frac{k + \text{Pdim}(\mathcal{F}) + \log(\frac{1}{\delta})}{\epsilon^2}\right)$$

where $O()$ hides logarithmic factors of k and $\frac{1}{\eta}$.
k-means’ solution may not be unique for some mappings
 Such mappings should not be selected!
Uniqueness of Solution Assumption

- k-means’ solution may not be unique for some mappings.
- Such mappings should not be selected!
- We should compare the output of the algorithm only to those mappings in \mathcal{F} that have unique solutions.
Uniqueness of Solution Assumption

- k-means’ solution may not be unique for some mappings
- Such mappings should not be selected!
- We should compare the output of the algorithm only to those mappings in \mathcal{F} that have unique solutions
- (η, ϵ)-Uniqueness: Every η-optimal solution to k-means’ cost is ϵ-close to the optimal solution
Uniqueness of Solution Assumption

- *k*-means’ solution may not be unique for some mappings
- Such mappings should not be selected!
- We should compare the output of the algorithm only to those mappings in \mathcal{F} that have unique solutions
- (η, ϵ)-Uniqueness: Every η-optimal solution to *k*-means’ cost is ϵ-close to the optimal solution
- For simplifying the presentation of the results, we assume that the class \mathcal{F} includes only the mappings under which the solution is unique.
ε-Representative Sample

Sample S is ϵ-representative with respect to \mathcal{F}, X and the clustering C^*, if for every $f \in \mathcal{F}$ the following holds

$$|\Delta_X(C^*, C^*_f) - \Delta_S(C^*, C^*_f)| \leq \epsilon$$
\(\epsilon\)-Representative Sample

Sample \(S\) is \(\epsilon\)-representative with respect to \(\mathcal{F}\), \(X\) and the clustering \(C^*\), if for every \(f \in \mathcal{F}\) the following holds

\[|\Delta_X(C^*, C^f_X) - \Delta_S(C^*, C^f_X)| \leq \epsilon\]

Theorem (Sufficiency of Uniform Convergence)

If \(S\) is an \(\frac{\epsilon}{2}\)-representative sample with respect to \(X\), \(\mathcal{F}\) and \(C^*\) then

\[\Delta_X(C^*, C^\hat{f}_X) \leq \Delta_X(C^*, C^{f^*}_X) + \epsilon\]

where \(f^* = \arg\min_{f \in \mathcal{F}} \Delta_X(C^*, C^f_X)\) and \(\hat{f} = A^{TERM}(S, C^*|_S)\).
ε-Representative Sample

Sample \(S \) is \(\epsilon \)-representative with respect to \(\mathcal{F}, X \) and the clustering \(C^* \), if for every \(f \in \mathcal{F} \) the following holds

\[
|\Delta_X(C^*, C_X^f) - \Delta_S(C^*, C_X^f)| \leq \epsilon
\]

Theorem (Sufficiency of Uniform Convergence)

If \(S \) is an \(\frac{\epsilon}{2} \)-representative sample with respect to \(X, \mathcal{F} \) and \(C^* \) then

\[
\Delta_X(C^*, C_X^{\hat{f}}) \leq \Delta_X(C^*, C_X^{f^*}) + \epsilon
\]

where \(f^* = \arg\min_{f \in \mathcal{F}} \Delta_X(C^*, C_X^f) \) and \(\hat{f} = A^{TERM}(S, C^* \mid S) \).

How large should be the sample so that with high probability it is \(\frac{\epsilon}{2} \)-representative (Sample complexity of uniform convergence)?
\[\Delta_X(C^*, C^f_X) \leq \Delta_S(C^*, C^f_X) + \frac{\epsilon}{2} \]

\[\leq \Delta_S(C^*, C^{f*}_X) + \frac{\epsilon}{2} \]

\[\leq \Delta_X(C^*, C^{f*}_X) + \frac{\epsilon}{2} + \frac{\epsilon}{2} \]

\[\leq \Delta_X(C^*, C^{f*}_X) + \epsilon \]
Reduction to Binary Classes

\[h_{f_1, f_2}^{f_1, f_2}(x) = \begin{cases}
1 & x \in \bigcup_{i=1}^k (C_{i}^{f_1} \Delta C_{\sigma(i)}^{f_2}) \\
0 & \text{otherwise}
\end{cases} \]
Reduction to Binary Classes

\[h_{\sigma}^{f_1, f_2}(x) = \begin{cases}
1 & x \in \bigcup_{i=1}^{k} (C_{f_1}^i \Delta C_{\sigma(i)}^{f_2}) \\
0 & \text{otherwise}
\end{cases} \]

\[H^F = \{ h_{\sigma}^{f_1, f_2}(.) : f_1, f_2 \in F, \sigma \in \pi \} \]
Reduction to Binary Classes

\[
h_{\sigma}^{f_1, f_2}(x) = \begin{cases}
1 & x \in \bigcup_{i=1}^{k} (C_{\sigma(i)}^{f_1} \Delta C_{\sigma(i)}^{f_2}) \\
0 & \text{otherwise}
\end{cases}
\]

\[H^F = \{ h_{\sigma}^{f_1, f_2}(.) : f_1, f_2 \in \mathcal{F}, \sigma \in \pi \}\]

Theorem (Reduction to Binary Classification)

If \(S \subset X \) is such that for all \(h \in H^F \)

\[|h(S) - h(X)| \leq \epsilon\]

then \(S \) will be \(\epsilon \)-representative, i.e., for all \(f_1, f_2 \in \mathcal{F} \) we have

\[|\Delta_X(C_X^{f_1}, C_X^{f_2}) - \Delta_S(C_X^{f_1}, C_X^{f_2})| \leq \epsilon\]
Reduction to Binary Classes: Proof

$$|\Delta_S(C_X^{f_1}, C_X^{f_2}) - \Delta_X(C_X^{f_1}, C_X^{f_2})|$$
Reduction to Binary Classes: Proof

$$|\Delta_S(C_X^{f_1}, C_X^{f_2}) - \Delta_X(C_X^{f_1}, C_X^{f_2})|$$

$$= \left| \left(\min_{\sigma} \frac{1}{|S|} \sum_{x \in S} h_{\sigma}^{f_1,f_2} \right) - \left(\min_{\sigma} \frac{1}{|X|} \sum_{x \in X} h_{\sigma}^{f_1,f_2} \right) \right|$$
Reduction to Binary Classes: Proof

\[|\Delta_s(C^f_1, C^f_2) - \Delta_X(C^f_1, C^f_2)| \]

\[= \left| \left(\min_\sigma \frac{1}{|S|} \sum_{x \in S} h^{f_1, f_2}_\sigma \right) - \left(\min_\sigma \frac{1}{|X|} \sum_{x \in X} h^{f_1, f_2}_\sigma \right) \right| \]

\[\leq \left| \max_\sigma \left(\frac{1}{|S|} \sum_{x \in S} h^{f_1, f_2}_\sigma - \frac{1}{|X|} \sum_{x \in X} h^{f_1, f_2}_\sigma \right) \right| \]
Reduction to Binary Classes: Proof

\[|\Delta_S(C_{X}^{f_1}, C_{X}^{f_2}) - \Delta_X(C_{X}^{f_1}, C_{X}^{f_2})| = \left| \left(\min_{\sigma} \frac{1}{|S|} \sum_{x \in S} h_{\sigma}^{f_1,f_2} \right) - \left(\min_{\sigma} \frac{1}{|X|} \sum_{x \in X} h_{\sigma}^{f_1,f_2} \right) \right| \leq \left| \max_{\sigma} \left(\frac{1}{|S|} \sum_{x \in S} h_{\sigma}^{f_1,f_2} - \frac{1}{|X|} \sum_{x \in X} h_{\sigma}^{f_1,f_2} \right) \right| \leq \max_{\sigma} \left(h_{\sigma}^{f_1,f_2}(S) - h_{\sigma}^{f_1,f_2}(X) \right) \leq \epsilon \]
Reduction to Binary Classes

- Enough to have an ϵ-representative sample w.r.t. H^F
Reduction to Binary Classes

- Enough to have an ϵ-representative sample w.r.t. H^F
- How large should be the training sample so that with high probability it is ϵ-representative w.r.t. H^F?
Reduction to Binary Classes

- Enough to have an ϵ-representative sample w.r.t. H^F
- How large should be the training sample so that with high probability it is ϵ-representative w.r.t. H^F?
- Or, sample complexity of uniform convergence w.r.t. H^F?
Reduction to Binary Classes

- Enough to have an ϵ-representative sample w.r.t. H^F.
- How large should be the training sample so that with high probability it is ϵ-representative w.r.t. H^F?
- Or, sample complexity of uniform convergence w.r.t. H^F?
- Can we bound the sample complexity based on VC-DIM(H^F)?
Reduction to Binary Classes

- Enough to have an \(\epsilon \)-representative sample w.r.t. \(H^F \)
- How large should be the training sample so that with high probability it is \(\epsilon \)-representative w.r.t. \(H^F \)?
- Or, sample complexity of uniform convergence w.r.t. \(H^F \)?
- Can we bound the sample complexity based on VC-DIM(\(H^F \))?
- Yes, but \(H^F \) depends on the distribution (i.e., on \(X \))

\[
h^f_\sigma(x) = \begin{cases}
1 & x \in \bigcup_{i=1}^k (C_{i}^{f_1} \Delta C_{\sigma(i)}^{f_2}) \\
0 & \text{otherwise}
\end{cases}
\]
Reduction to Binary Classes

- Enough to have an ϵ-representative sample w.r.t. H^F
- How large should be the training sample so that with high probability it is ϵ-representative w.r.t. H^F?
- Or, sample complexity of uniform convergence w.r.t. H^F?
- Can we bound the sample complexity based on VC-DIM(H^F)?
- Yes, but H^F depends on the distribution (i.e., on X)

$$h_{\sigma,f_1,f_2}^F(x) = \begin{cases}
1 & x \in \bigcup_{i=1}^k (C_{\sigma(i)}^{f_1} \Delta C_{\sigma(i)}^{f_2}) \\
0 & \text{otherwise}
\end{cases}$$

- Can we give a (distribution-free) bound based on the capacity of F?
Proof of Uniform Convergence

Lemma

Let \mathcal{F} be a class of mappings with (η, ϵ)-uniqueness property. Then for $f_1, f_2 \in \mathcal{F}$ if

$$d_{L_1}^X(f_1, f_2) < \frac{\eta}{12}$$

then

$$\Delta_X(f_1, f_2) < 2\epsilon$$
Proof of Uniform Convergence

Lemma
Let \mathcal{F} be a class of mappings with (η, ϵ)-uniqueness property. Then for $f_1, f_2 \in \mathcal{F}$ if

$$d_{L_1}(f_1, f_2) < \frac{\eta}{12}$$

then

$$\Delta_X(f_1, f_2) < 2\epsilon$$

Lemma
Let \mathcal{F} be a class of mappings with (η, ϵ)-uniqueness property. Then

$$\mathcal{N}(H^\mathcal{F}, d_{L_1}^X, 2\epsilon) \leq k! \mathcal{N}(\mathcal{F}, d_{L_1}^X, \frac{\eta}{12})$$

Hassan Ashtiani & Shai Ben-David ()
Clustering with Advice
December 2015
Proof of Uniform Convergence

Theorem

Let \mathcal{F} be a class of mappings with (η, ϵ)-uniqueness property. Then

$$m_{\mathcal{F}}^{UC} (\epsilon, \delta) \leq O\left(\log k! + \log \mathcal{N}(\mathcal{F}, d^X_{L_1}, \frac{\eta}{\alpha}) + \log \left(\frac{1}{\delta} \right) \right)$$
Proof of Uniform Convergence

Theorem
Let \mathcal{F} be a class of mappings with (η, ϵ)-uniqueness property. Then

$$m_{\mathcal{F}}^{UC}(\epsilon, \delta) \leq O\left(\frac{\log k! + \log \mathcal{N}(\mathcal{F}, d_{L_1}^X, \frac{\eta}{\alpha}) + \log(\frac{1}{\delta})}{\epsilon^2}\right)$$

Theorem
Let \mathcal{F} be a class of mappings with (η, ϵ)-uniqueness property. Then

$$m_{\mathcal{F}}^{UC}(\epsilon, \delta) \leq O\left(\frac{k + Pdim(\mathcal{F}) + \log(\frac{1}{\delta})}{\epsilon^2}\right)$$

where $O()$ hides logarithmic factors of k and $\frac{1}{\eta}$.
Covering Number

- \(d(.,.) \): a metric over \(\mathcal{F} \)
Covering Number

- $d(., .)$: a metric over \mathcal{F}
- Δ-distance between two mappings:

$$\Delta_X(f_1, f_2) = \Delta_X(C_{f_1}^X, C_{f_2}^X)$$
Covering Number

- $d(., .)$: a metric over \mathcal{F}
- Δ-distance between two mappings:
 $$\Delta_X(f_1, f_2) = \Delta_X(C_{f_1}^X, C_{f_2}^X)$$
- L_1 distance between two mappings:
 $$d_{L_1}^X(f_1, f_2) = \frac{1}{|X|} \sum_{x \in X} \|f_1(x) - f_2(x)\|_2$$
Covering Number

- \(d(.,.)\): a metric over \(\mathcal{F}\)
- \(\Delta\)-distance between two mappings:
 \[
 \Delta_X(f_1, f_2) = \Delta_X(C_{f_1}^X, C_{f_2}^X)
 \]

- \(L_1\) distance between two mappings:
 \[
 d_{L_1}^X(f_1, f_2) = \frac{1}{|X|} \sum_{x \in X} \|f_1(x) - f_2(x)\|_2
 \]

- \(\mathcal{N}(\mathcal{F}, d, \epsilon)\) or covering number: Roughly, the number of \(\epsilon\)-different members of \(\mathcal{F}\) with respect to \(d(.,.)\)
Let \mathcal{F} be a class of (η, ϵ)-unique mappings. Then the sample complexity of learning representation for k-means clustering with respect to \mathcal{F} is upper bounded by

$$m_{\mathcal{F}}(\epsilon, \delta) \leq O\left(\frac{k + Pdim(\mathcal{F}) + \log\left(\frac{1}{\delta}\right)}{\epsilon^2}\right)$$

where O hides logarithmic factors of k and $\frac{1}{\eta}$.