There is a huge number of applications for clustering
Motivation

- There is a huge number of applications for clustering
- Tons of algorithmic choices
 - Clustering algorithms
 - Similarity metrics
 - Preprocessing techniques
 - Many conflicting outcomes
- How should we select among them?
Motivation

- There is a huge number of applications for clustering
- Tons of algorithmic choices
 - Clustering algorithms
 - Similarity metrics
 - Preprocessing techniques
 - Many conflicting outcomes
- How should we select among them?
 - Domain Knowledge
- How can such knowledge be incorporated into the clustering?
 - Trial and error?
 - Intuitions?
 - A more principled way?
Overview

1. Motivation
2. Our Approach
3. Previous Work
4. Our Model
5. The Algorithm
6. Results
7. Sketch of the Proof
8. Conclusions
Our Approach

Communicating Domain Knowledge

1. Take a small random subset of the data
2. Have a domain expert cluster the subset
3. "Learn" a model consistent with that clustering
4. Cluster the rest of data based on the model

Central Questions

- Any guarantees for the outcome?
- How large should the sample be?
- How shall models for clustering be represented?
Idea

- Rather than searching for an algorithm, we fix the algorithm and search for a suitable notion of **similarity metric**.
- The algorithm we chose as our fixed clustering tool is **k-means**.
- Is this flexible enough?
Idea

- Rather than searching for an algorithm, we fix the algorithm and search for a suitable notion of similarity metric.
- The algorithm we chose as our fixed clustering tool is \(k \)-means.
- Is this flexible enough?
 - Varying the metric over instances yields any possible data partition (i.e., \(k \)-means enjoys the richness property).
Rather than searching for an algorithm, we fix the algorithm and search for a suitable notion of similarity metric.

The algorithm we chose as our fixed clustering tool is k-means.

Is this flexible enough?

- Varying the metric over instances yields any possible data partition (i.e., k-means enjoys the richness property).

How can we avoid overfitting?
Idea

- Rather than searching for an algorithm, we fix the algorithm and search for a suitable notion of similarity metric.
- The algorithm we chose as our fixed clustering tool is k-means. Is this flexible enough?
 - Varying the metric over instances yields any possible data partition (i.e., k-means enjoys the richness property).
- How can we avoid overfitting?
 - Select the metric from a specific class of candidate metrics.
Rather than searching for an algorithm, we fix the algorithm and search for a suitable notion of similarity metric. The algorithm we chose as our fixed clustering tool is k-means. Is this flexible enough? Varying the metric over instances yields any possible data partition (I.e., k-means enjoys the richness property).

How can we avoid overfitting? Select the metric from a specific class of candidate metrics. What if the optimal metric is not inside the class?
Rather than searching for an algorithm, we fix the algorithm and search for a suitable notion of similarity metric.

The algorithm we chose as our fixed clustering tool is k-means.

Is this flexible enough?

- Varying the metric over instances yields any possible data partition (i.e., k-means enjoys the richness property).

How can we avoid overfitting?

- Select the metric from a specific class of candidate metrics.

What if the optimal metric is not inside the class?

- We will establish an agnostic guarantee!
Communicating Domain Knowledge - Revisited

1. Take a small random subset of the data
2. Have a domain expert cluster the subset
3. Let the algorithm select a metric (from a class of metrics)
4. Perform k-means clustering using the metric and cluster the rest of the data

- What kind of algorithm should we use?
- What kind of guarantee can we expect?
 - We will establish **PAC-type** guarantees.
Previous Work

- **Semi-Supervised Clustering**
 - Constrained clustering *(must/cannot)* links
 - Modify the clustering objective (Demiriz et al. (1999); Law et al. (2005); Basu et al. (2008))
 - Metric learning (Xing et al. (2002); Alipanahi et al. (2008))
 - Mostly ad hoc, with focus on computational aspects rather than statistical guarantees

- **Property-based Clustering** (Ackerman, Ben-David and Loker, 2010)
 - Appropriate for selecting the algorithm
 - Properties are not yet user-level
Overview

1. Motivation
2. Our Approach
3. Previous Work
4. Our Model
5. The Algorithm
6. Results
7. Sketch of the Proof
8. Conclusions
Definitions

- X: The domain
- $f : X \mapsto \mathbb{R}^d$
- Learning the mappings is equivalent to learning similarity metric/kernel
- C_X^f: The clustering of X induced by first mapping the data by f and then doing k-means clustering
- \mathcal{F}: A class of mappings from X to \mathbb{R}^d
- C^*: Optimal (unknown) k-clustering of X
- Algorithm $A(S, C^*_S)$ takes a sample $S \subset X$ and its clustering C^*_S, and outputs a mapping $f_A \in \mathcal{F}$
Definitions II

- f_A may not be optimal. How can we measure its "error"?
- The error is the $\Delta_X(C^*, C^{f_A}_X)$ (the difference between C^* and the clustering induced by f_A)
- f_A is ϵ-optimal when $\Delta_X(C^*, C^{f_A}_X) \leq \epsilon$
f_A may not be optimal. How can we measure its "error"?

- The error is the $\Delta_X(C^*, C_X^{f_A})$ (the difference between C^* and the clustering induced by f_A)
- f_A is ϵ-optimal when $\Delta_X(C^*, C_X^{f_A}) \leq \epsilon$
- Agnostic ϵ-optimality:

$$
\Delta_X(C^*, C_X^{f_A}) \leq \inf_{f \in \mathcal{F}} \Delta_X(C^*, C_X^f) + \epsilon
$$
Definitions II

- f_A may not be optimal. How can we measure its "error"?
- The error is the $\Delta_X(C^*, C_X^{f_A})$ (the difference between C^* and the clustering induced by f_A)
- f_A is ϵ-optimal when $\Delta_X(C^*, C_X^{f_A}) \leq \epsilon$
- Agnostic ϵ-optimality:

$$\Delta_X(C^*, C_X^{f_A}) \leq \inf_{f \in F} \Delta_X(C^*, C_X^f) + \epsilon$$

- A natural choice of distance between two k-clusterings:

$$\Delta_X(C^1, C^2) = \min_{\sigma \in \pi^k} \frac{1}{|X|} \sum_{i=1}^{k} |C_{\sigma(i)}^{C^1} \Delta C_{\sigma(i)}^{C^2}|$$
Problem Formulation

PAC Supervised Representation Learning for K-Means (PAC-SRLK)

A is a PAC-SRLK learner for \mathcal{F} with $m_\mathcal{F}$ samples if

For every X and C^*, if S is a randomly (uniformly) selected subset of X of size at least $m_\mathcal{F}(\epsilon, \delta)$, then with probability at least $1 - \delta$

$$\Delta_X(C^*, C_X^{f_A}) \leq \inf_{f \in \mathcal{F}} \Delta_X(C^*, C_X^f) + \epsilon$$
PAC Supervised Representation Learning for K-Means (PAC-SRLK)

A is a PAC-SRLK learner for \mathcal{F} with $m_\mathcal{F}$ samples if

For every X and C^*, if S is a randomly (uniformly) selected subset of X of size at least $m_\mathcal{F}(\epsilon, \delta)$, then with probability at least $1 - \delta$

$$\Delta_X(C^*, C^f_A) \leq \inf_{f \in \mathcal{F}} \Delta_X(C^*, C^f_X) + \epsilon$$

- Can we bound the sample complexity, $m_\mathcal{F}(\epsilon, \delta)$?
Problem Formulation

PAC Supervised Representation Learning for K-Means (PAC-SRLK)

A is a PAC-SRLK learner for \mathcal{F} with $m_{\mathcal{F}}$ samples if

For every X and C^*, if S is a randomly (uniformly) selected subset of X of size at least $m_{\mathcal{F}}(\epsilon, \delta)$, then with probability at least $1 - \delta$

$$\Delta_X(C^*, C^f_X) \leq \inf_{f \in \mathcal{F}} \Delta_X(C^*, C^f_X) + \epsilon$$

- Can we bound the sample complexity, $m_{\mathcal{F}}(\epsilon, \delta)$?
- Intuitively, the richer \mathcal{F}, the more samples we need.
Overview

1. Motivation
2. Our Approach
3. Previous Work
4. Our Model
5. The Algorithm
6. Results
7. Sketch of the Proof
8. Conclusions
TERM Algorithm

- What kind of algorithm can be a PAC-SRLK learner?

Transductive Empirical Risk Minimization (TERM)

A TERM learner for \mathcal{F} takes as input a sample $S \subset X$ and its clustering Y and outputs:

$$A^{TERM}(S, Y) = \arg \min_{f \in \mathcal{F}} \Delta_S(C_X^f |_S, Y)$$

- It finds the mapping based on which if you cluster X, the empirical error will be minimized.
Overview

1. Motivation
2. Our Approach
3. Previous Work
4. Our Model
5. The Algorithm
6. Results
7. Sketch of the Proof
8. Conclusions
The sample complexity of representation learning for k-means clustering (PAC-SRLK) with respect to \mathcal{F} is upper bounded by

$$m_{\mathcal{F}}(\epsilon, \delta) \leq O\left(\frac{k + Pdim(\mathcal{F}) + \log(\frac{1}{\delta})}{\epsilon^2}\right)$$

where O hides logarithmic factors.

- **Pseudo-dimension** measures the capacity of \mathcal{F}
The sample complexity of representation learning for k-means clustering (PAC-SRLK) with respect to \mathcal{F} is upper bounded by

$$m_{\mathcal{F}}(\epsilon, \delta) \leq O\left(\frac{k + Pdim(\mathcal{F}) + \log\left(\frac{1}{\delta}\right)}{\epsilon^2}\right)$$

where O hides logarithmic factors.

- **Pseudo-dimension** measures the capacity of \mathcal{F}

Corollary

Let \mathcal{F} be a set of linear mappings from \mathbb{R}^{d_1} to \mathbb{R}^{d_2}. Then

$$m_{\mathcal{F}}(\epsilon, \delta) \leq O\left(\frac{k + d_1 d_2 + \log\left(\frac{1}{\delta}\right)}{\epsilon^2}\right)$$
Overview

1 Motivation

2 Our Approach

3 Previous Work

4 Our Model

5 The Algorithm

6 Results

7 Sketch of the Proof

8 Conclusions
Sketch of the Proof

1. Bound $Pdim(\mathcal{F})$
2. Bound $\mathcal{N}(\mathcal{F}, d^X_{L_1}, \epsilon)$ based on $Pdim(\mathcal{F})$ and ϵ
3. Bound $\mathcal{N}(\mathcal{F}, \Delta_X, \epsilon)$ based on $\mathcal{N}(\mathcal{F}, d^X_{L_1}, \epsilon)$
4. Bound the $m^\mathcal{F}_{UC}(\epsilon, \delta)$ based on δ and $\mathcal{N}(\mathcal{F}, \Delta_X, \epsilon)$
5. Bound $m^\mathcal{F}(\epsilon, \delta)$ based on $m^\mathcal{F}_{UC}(\epsilon, \delta)$
Overview

1. Motivation
2. Our Approach
3. Previous Work
4. Our Model
5. The Algorithm
6. Results
7. Sketch of the Proof
8. Conclusions
Conclusions

- We proposed a framework for exploiting domain knowledge into clustering.
- We defined the notion of PAC-SRLK for the framework.
- The sample complexity of learning was bounded based on the pseudo-dimension of the class of mappings.
- The algorithm used to prove the result was a variant of empirical risk minimization.
- Open Problems
 - Computational complexity?
 - Generalizing the results to other clustering algorithms
Thank You!