PAC-MDP Learning with Knowledge-based Admissible Models

Marek Grześ and Daniel Kudenko

Department of Computer Science

The University of York

United Kingdom

AAMAS 2010
Reinforcement Learning

- The loop of interaction:
 - Agent can see the current state of the environment
 - Agent chooses an action
 - State of the environment changes, agent receives reward or punishment

- The **goal of learning**: quickly learn the policy that maximises the long-term expected reward
Exploration-Exploitation Trade-off

- We have found a reward of 100. *Is it the best reward which can be achieved?*

- **Exploitation**: should I stick to the best reward which was found? *But, there may still be a high reward undiscovered.*

- **Exploration**: should I try more new actions to find a region with a higher reward? *But, a lot of negative reward may be collected while exploring unknown actions.*
While learning the policy, also learn the model of the environment

Assume that all unknown actions lead to a state with a highest possible reward

This approach has been proven to be PAC, i.e., the number of suboptimal decisions is bounded polynomially by relevant parameters
Problem Formulation

- PAC-MDP learning vs. heuristic search
 - Default R-max ‘is like’ best-first search (i.e., A*) with a trivial heuristic $h(s)=0$
 - Heuristic search is efficient when used with good informative heuristics
 - It is useful and desirable to transfer this idea to reinforcement learning
Problem Formulation ctd

- Existing literature shows how admissible heuristics can improve PAC-MDP learning via reward shaping (Asmuth, Littman & Zinkov 2008).
- In this work, we are looking for alternative ways of incorporating knowledge (heuristics) into reinforcement learning algorithms.
 - Different knowledge (global admissible heuristics may not be available).
 - Different ways of using knowledge (more efficient than reward shaping).
 - We want to guarantee that the algorithm remains PAC-MDP.
Determinisation in Symbolic Planning

- Action representation: Probabilistic Planning Domain Description Language (PPDDL)

\[(a \ p_1 \ e_1 \ ... \ p_n \ e_n)\]

- Determinisation (probabilities known but ignored), e.g., FF-Replan, P-Graphplan

- In reinforcement learning probabilities are not known anyway
All-outcomes (AO) Determinisation

- Available knowledge: all outcomes e_i of each action, a.

 $$(a \ p_1 \ e_1 \ ... \ p_n \ e_n)$$

- Create a new MDP \hat{M} in which there is a deterministic action a_d for each possible effect, e_i, of a given action a.

- The value function of a new MDP, \hat{M}, is admissible, i.e.,
 $$\hat{V}(s) \geq V^*(s)$$
Free Space Assumption (FSA)

- Available knowledge: intended (which is either most probable or completely blocked) outcome \(e_i \) of each action, \(a \). If the intended outcome is blocked, then all remaining outcomes, \(e_i \), of a given action are most probable outcomes of different actions.

\[(a \ p_1 \ e_1 \ ... \ p_n \ e_n)\]

- Create a new MDP \(\hat{M} \) in which each action, \(a \), is replaced by its intended outcome.

- The value function of a new MDP, \(\hat{M} \), is admissible, i.e., \(\hat{V}(s) \geq V^*(s) \)
PAC-MDP Learning with Admissible Models

- **Rmax**
 - If \((s,a)\) not known (i.e., \(n(s,a) < m\)): use Rmax
 - if \((s,a)\) known (i.e., \(n(s,a) \geq m\)): use estimated model
PAC-MDP Learning with Admissible Models

- **Rmax**
 - If \((s,a)\) not known (i.e., \(n(s,a) < m\)): use Rmax
 - if \((s,a)\) known (i.e., \(n(s,a) \geq m\)): use estimated model

- **Our approach**
 - If \((s,a)\) not known (i.e., \(n(s,a) < m\)): use the **knowledge-based admissible model**
 - if \((s,a)\) known (i.e., \(n(s,a) \geq m\)): use estimated model
Results

Figure: Results on a 25×25 maze domain. AO knowledge.
Results

Figure: Results on a 25×25 maze domain. FSA knowledge.
Comparing with the Bayesian Exploration Bonus Algorithm

- Bayesian Exploration Bonus (BEB) approximates Bayesian exploration (Kolter & Ng 2009).
 - (+) It can use action knowledge (AO and FSA) via informative priors.
 - (-) It is not PAC-MDP.
- Our approach shows how to use this knowledge with PAC-MDP algorithms.
- Comparing BEB using informative priors with our approach using knowledge-based models (see our paper).
Conclusion

▶ The use of knowledge in RL is important.
▶ It was shown how to use partial knowledge about actions with PAC-MDP algorithms in a theoretically correct way.
▶ Global admissible heuristics required by reward shaping may not be available (e.g., PPDDL domains).
▶ Knowledge-based admissible models turned out to be more efficient than reward shaping with equivalent knowledge: in our case knowledge is used when actions are still ‘unknown’, whereas reward shaping helps only with known actions.
▶ BEB can use AO and FSA knowledge via informative priors. It was shown how to use this knowledge in the PAC-MDP framework (BEB is not PAC-MDP).

May 9, 2010