PAC-MDP Learning with Knowledge-based Admissible Models

Marek Grzeź and Daniel Kudenko
Department of Computer Science, University of York, United Kingdom

Introduction

- Reinforcement learning suffers scalability problems due to state space explosion and the temporal credit assignment problem
- A knowledge-based approach to reinforcement learning is desirable
- Relation between uninformed search → informed search is like relation between basic RL → RL with knowledge
- In this work:
 - We are looking for new ways of incorporating domain knowledge (heuristics) into reinforcement learning algorithms
 - Knowledge and methods of using knowledge, which preserve theoretical properties of PAC-MDP learning are sought

Reinforcement Learning

- The loop of interaction:
 - Agent can see the current state of the environment
 - Agent chooses an action
 - State of the environment changes, agent receives reward or punishment
- The goal of learning: quickly learn the policy that maximises the long-term expected reward

Exploration-Exploitation Trade-off

- We have found a reward of 100. Is it the best reward which can be achieved?
- Exploration: should I stick to the best reward which was found? But, there may still be a high reward undiscovered
- Exploration: should I try more new actions to find a region with a higher reward? But, a lot of negative reward may be collected while exploring unknown actions

PAC-MDP Learning

- While learning the policy, also learn the model of the environment
- Assume that all unknown actions lead to a state with a highest possible reward, R-max
- This approach has been proven to be PAC, i.e., the number of suboptimal decisions is bounded polynomially by relevant parameters

Problem Formulation

- PAC-MDP learning vs. heuristic search
 - Heuristic search is efficient when used with good informative heuristics (knowledge)
 - It is useful and desirable to transfer this idea to reinforcement learning
- Existing literature shows how admissible heuristics can improve PAC-MDP learning via reward shaping (Asmuth, Littman & Zinkov 2008)
- In this work, we are looking for alternative ways of incorporating knowledge (heuristics) into reinforcement learning algorithms
- Different knowledge (global admissible heuristics may not be available)
- Different ways of using knowledge (potentially more efficient than reward shaping)
- We want to guarantee that the algorithm remains PAC-MDP

Determinisation in Symbolic Planning

- Action representation: Probabilistic Planning Domain Description Language (PPDDL)
 \((a_1, e_1; \ldots, a_n, e_n) \)
- Determinisation (probabilities known but ignored), e.g., FF-Replan, P-Graphplan
- In reinforcement learning probabilities are not known anyway

(1) All-outcomes (AO) Determinisation

- Available knowledge: all outcomes \(e_i \) of each action, \(a \)
 \((a_1, e_1; \ldots, a_n, e_n) \)
- Create a new MDP \(\hat{M} \) in which there is a deterministic action \(a_d \) for each possible effect, \(e_i \), of a given action \(a \)
- For any state \(s \) and action \(a \), the condition \(\hat{Q}(s, a) \geq Q^*(s, a) \) is satisfied after value iteration on the MDP \(\hat{M} \) which is obtained from all-outcomes determination

(2) Free Space Assumption (FSA)

- Available knowledge: intended (which is either most probable or completely blocked) outcome \(e_i \) of each action, \(a \). If the intended outcome is blocked, then all remaining outcomes, \(e_i \), of a given action are most probable outcomes of different actions
 \((a_1, e_1; \ldots, p_n, e_n) \)
- Create a new MDP \(\bar{M} \) in which each action, \(a \), is replaced by its intended outcome
- For any state \(s \) and action \(a \), the condition \(\bar{V}(s) \geq V(s) \) is satisfied after value iteration on the MDP \(\bar{M} \) which is obtained from FSA determination

PAC-MDP Learning with Admissible Models: Our Approach

- Rmax
 - If \((s, a) \) not known (i.e., \(n(s, a) < m \)): use Rmax
 - If \((s, a) \) known (i.e., \(n(s, a) \geq m \)): use estimated model
- Our approach
 - If \((s, a) \) not known (i.e., \(n(s, a) < m \)): use the knowledge-based admissible model
 - If \((s, a) \) known (i.e., \(n(s, a) \geq m \)): use estimated model

Results

- Figure: Results on a 25 x 25 maze domain. AO knowledge and \(\rho = 1 \)
- Figure: Results on a 25 x 25 maze domain. FSA knowledge and \(\rho = 0.8 \)

Comparing with the Bayesian Exploration Bonus Algorithm

- Bayesian Exploration Bonus (BEB) approximates Bayesian exploration (Kolter & Ng 2009)
 - (+) It can use action knowledge (AO and FSA) via informative priors
 - (-) It is not PAC-MDP
- Our approach shows how to use this knowledge with PAC-MDP algorithms
- Comparing BEB using informative priors with our approach using knowledge-based models

- Figure: Results on a 25 x 25 maze domain. AO knowledge and \(\rho = 1 \)
- Figure: Results on a 25 x 25 maze domain. FSA knowledge and \(\rho = 0.8 \)

Conclusion

- The use of knowledge in RL is important
- It was shown how to use partial knowledge about actions with PAC-MDP algorithms in a theoretically correct way
- Global admissible heuristics required by reward shaping may not be available (e.g., PPDDL domains)
- Knowledge-based admissible models turned out to be more efficient than reward shaping with equivalent knowledge: in our case knowledge is used when actions are still ‘unknown’, whereas reward shaping helps only with known actions
- BEB can use AO and FSA knowledge via informative priors. It was shown how to use this knowledge in the PAC-MDP framework (BEB is not PAC-MDP)