Closure Properties for Turing Machines (9.1, 9.2)

Recall, an input x on TM M. M can

- Halt and accept x, $x \in L(M)$
- Halt and reject x, $x \notin L(M)$
- Crash, $x \notin L(M)$
- Run forever, $x \notin L(M)$

This defines 2 different classes of languages:

TM M accepts language L if $L = L(M)$.

- M accepts x if and only if $x \in L$
- May loop forever

TM M decides language L if $L = L(M)$ and if $x \notin L$, M rejects or crashes on x.

- M always stops
- No infinite looping

A language is **recursive (or decidable)** if there exists a TM M that decides L.

A language is **recursively enumerable** if there exists a TM M that accepts L.

If L is recursive then L is also recursively enumerable.

- A TM that decides L also accepts L.

If L is recursive then the complement L' is also recursive.

TM for L': Run x on M (the TM that decides L)

- If M accepts x then reject x.
- If M rejects or crashes, then accept x.

Union and Intersection

Recursive

If L_1 is recursive and L_2 is recursive then $L_1 \cup L_2$ and $L_1 \cap L_2$ are also recursive.

Use a multitape TM:

- Copy input to tape 2 and tape 3
- Execute M_1 on tape 2 and M_2 on tape 3 (neither will run forever; i.e. we get a result)
- They will decide whether x is in L_1 and/or L_2
- Test if both M_1 and M_2 accepted (intersection)
• Test if one of \(M_1 \) and \(M_2 \) accepted (union)

If \(L_1 \) and \(L_2 \) are recursive then the difference \(L_1 - L_2 = L_1 \cap L_2' \) is recursive.

Recursively Enumerable

If \(L_1 \) and \(L_2 \) are recursively enumerable then \(L_1 \cup L_2 \) and \(L_1 \cap L_2 \) are recursively enumerable.

• Similar to the recursive case but need to handle the case where \(M_1 \) and \(M_2 \) can run forever.
• Simulate \(M_1 \) and \(M_2 \) running simultaneously – alternate one step from each machine.

For example, union

• If either machine ever accepts then accept
• If either machine ever rejects or crashes then continue to work on the other machine.

If \(L \) is recursively enumerated and \(L' \) is recursively enumerable then \(L \) is recursive.

• Let \(M \) and \(M' \) be TMs that accept \(L \) and \(L' \), respectively.
• Run \(M \) and \(M' \) simultaneously.
• For any word \(x \), it must be accepted by one of \(M \) or \(M' \)
• So, either \(M \) or \(M' \) will halt and accept
• If \(M \) halts and accepts then halt and accept
• If \(M' \) halts and accepts then halt and reject

The TM that runs \(M \) and \(M' \) simultaneously always halts and accepts or rejects so it decides \(L \) and \(L \) is recursive.

If \(L \) is recursively enumerable and \(L \) is not recursive then \(L' \) is not recursively enumerable.

Some Interesting Languages

\(E = \{ e(T) \mid T \text{ is a TM} \} \)

• Create a TM to check if \(e(T) \) is a valid encoding of a TM

\(LSA = \{ e(T) \mid \text{TM T accepts on input e(T)} \} \)

\(LNSA = \{ e(T) \mid T \text{ does not accept input e(T)} \} \)

\(LH = \{ e(T)\Delta z \mid \text{TM accepts input z} \} \)