Lecture 2 Solving Recurrences

Petrick (SCS, UW) CS341 — Module Divide and Conquer

Examples from previous courses - Sorting

MergeSort(A):
@ Divide array into left and right halves.
@ 2 Subproblems: Left and right half subarrays, recurse on both.

@ Merge the two sorted arrays = O(n) work to conquer.
Analysis:

Best-case/Worst-case: T(n) =2T(n/2)+ O(n) € O(nlog n)
Rigorously, T(n) = T(|n/2])+ T([n/2])+ cn

Petrick (SCS, UW) CS341 — Module Divide and Conquer Winter 2026 2/11

Solving Recurrence Relations

CS 240 typically only expected you to simply expand a few steps and find
the pattern but introduced the ideas of a recursion tree and the
substitution method.

Petrick (SCS, UW) CS341 — Module Divide and Conquer Winter 2026 3/11

Solving Recurrence Relations

CS 240 typically only expected you to simply expand a few steps and find
the pattern but introduced the ideas of a recursion tree and the
substitution method.

Quicksort: randomly chooses a pivot, partition to find the location i of
the pivot and create two subproblems. The recursion tree traces the
recursion and shows the work done for each subproblem.

Petrick (SCS, UW) CS341 — Module Divide and Conquer Winter 2026 3/11

Solving Recurrence Relations

CS 240 typically only expected you to simply expand a few steps and find
the pattern but introduced the ideas of a recursion tree and the
substitution method.

Quicksort: randomly chooses a pivot, partition to find the location i of
the pivot and create two subproblems. The recursion tree traces the
recursion and shows the work done for each subproblem.

Worst-Case (worst luck): T(n) = T(n— 1) + cn € O(n?)
Best-Case (best luck): T(n) =2T(n/2)+ cn € ©(nlog n)
Expected Runtime: ©(nlog n)

Petrick (SCS, UW) CS341 — Module Divide and Conquer Winter 2026 3/11

Recursion Tree for MergeSort

T(n) =2T(n/2) + cn, if nis even
T(1) =0, if counting number of comparisons

Recursion Tree where n is a power of 2:

Total work in the recursion tree sums to: ¢ - nlogn

Petrick (SCS, UW) CS341 — Module Divide and Conquer Winter 2026

4/11

Solving Mergesort

If we want to be precise, the math is not trivial:

T(n):{OTU%W)H(L%JH(n—l) I:Zi

Petrick (SCS, UW) CS341 — Module Divide and Conquer Winter 2026 5/11

Solving Mergesort

If we want to be precise, the math is not trivial:

T(n):{OTU%UH(L%JH(n—l) I;::

Resolves to T(n) = n[log n] — 2/'°enl 41

The recursion tree method finds the exact solution of the recurrence when
n is a power of 2, T(n) € O(nlog n).

Petrick (SCS, UW) CS341 — Module Divide and Conquer Winter 2026 5/11

Solving Mergesort

If we want to be precise, the math is not trivial:

T(n):{OTU;’UH(L;J)Hn—l) o1

Resolves to T(n) = n[log n] — oflogn] 4 1

The recursion tree method finds the exact solution of the recurrence when
n is a power of 2, T(n) € O(nlog n).

When given n that is not a power of 2, we can also argue that performing
the analysis using " = smallest power of 2 larger than n will also give a
precise result since n’ < 2 - n, runtimes are typically increasing and we only
want the growth rate.

Petrick (SCS, UW) CS341 — Module Divide and Conquer Winter 2026 5/11

Solving Recurrences by Substitution

Also known as “Lucky Guess”, "Guess and Check”, “Guess and Prove”, ...

T(n):{OT((gw)H(LgJH(n—l) -

Guess and prove by Induction that T(n) < c-nlogn,Vn > 1.

Petrick (SCS, UW) CS341 — Module Divide and Conquer Winter 2026 6 /11

Solving Recurrences by Substitution

Also known as “Lucky Guess”, "Guess and Check”, “Guess and Prove”, ...

T(n):{OTU%WHT(L%JH(n—l) -

Guess and prove by Induction that T(n) < c-nlogn,Vn > 1.

Base case: Forn=1, T(1)=0and c-nlogn=0; i.e. 0 <0.

Petrick (SCS, UW) CS341 — Module Divide and Conquer Winter 2026 6 /11

Solving Recurrences by Substitution

Also known as “Lucky Guess”, "Guess and Check”, “Guess and Prove”, ...

T(n):{Omsw)w(tgnﬂn—l) o1

Guess and prove by Induction that T(n) < c-nlogn,Vn > 1.
Base case: Forn=1, T(1)=0and c-nlogn=0; i.e. 0 <0.

Induction Hypothesis: Assume that T (k) < c- klogk for all k < n
where k > 2.

Induction Step: One method to give a rigorous proof is to separate into
even and odd cases. If n is even, we don't need floors and ceilings. If n is
odd, ...

Petrick (SCS, UW) CS341 — Module Divide and Conquer Winter 2026 6 /11

Careful! Watchout!
T(n)=2T(n/2)+n
Claim: T(n) € O(n)

Prove T(n) < cn,¥n > no.

Induction Hypothesis: Assume T (k) < c- k,Yk < n, k > no.

T(n)=2T(n/2)+n
< 2¢(n/2) + n by the Induction Hypothesis
=(c+1)n

Petrick (SCS, UW) CS341 — Module Divide and Conquer Winter 2026

7/11

Careful! Watchout!

T(n)=2T(n/2)+n
Claim: T(n) € O(n)
Prove T(n) < cn,¥n > no.

Induction Hypothesis: Assume T (k) < c- k,Yk < n, k > no.

T(n)=2T(n/2)+n
< 2¢(n/2) + n by the Induction Hypothesis
=(c+1)n

Conclusion: T(n) € O(n).

Petrick (SCS, UW) CS341 — Module Divide and Conquer Winter 2026 7/11

Careful! Watchout!

T(n)=2T(n/2)+n
Claim: T(n) € O(n)

Prove T(n) < cn,¥n > no.

Induction Hypothesis: Assume T (k) < c- k,Yk < n, k > no.

T(n)=2T(n/2)+n
< 2¢(n/2) + n by the Induction Hypothesis
=(c+1)n
Conclusion: T(n) € O(n).
The conclusion is clearly incorrect!
The problem is the constant is continuously growing.

Petrick (SCS, UW) CS341 — Module Divide and Conquer Winter 2026

7/11

Substitution - Changing the Guess

T(n):{lragnw(tgnﬂ -1

Guess T(n) € O(n).
Prove by induction that T(n) < cn for some constant c.

Petrick (SCS, UW) CS341 — Module Divide and Conquer Winter 2026

8/11

Substitution - Changing the Guess

T(n):{lrwgnw(tgml -1

Guess T(n) € O(n).
Prove by induction that T(n) < cn for some constant c.

Induction Step:

T(n) = T([31)+ T(15])+1
<c-[5lte- 5]+l

=cn+1

Petrick (SCS, UW) CS341 — Module Divide and Conquer Winter 2026

8/11

Substitution - Changing the Guess

T(n):{lrwgnw(tgml -1

Guess T(n) € O(n).
Prove by induction that T(n) < cn for some constant c.

Induction Step:

n n
T(m) = T(I3) + T(15)) +1

n n

<c Mtc 1 21+1

<c [Dlte o)+

=cn+1

What went wrong?
Petrick (SCS, UW) CS341 — Module Divide and Conquer Winter 2026

8 /11

Substitution - Changing the Guess

i {TOD TN+ 02

Guess T(n) € O(n).
Prove by induction that T(n) < cn for some constant c.

Induction Step:

T(n) = T([31)+ T(15])+1
<c-[5lte- 5]+l
=cn+1

What went wrong?
Fix? Add a lower order term: Try T(n) < cn— 1.

Petrick (SCS, UW) CS341 — Module Divide and Conquer Winter 2026

8 /11

Substitution - Changing the Guess

i {TOD TN+ 02

Guess T(n) € O(n).
Prove by induction that T(n) < cn for some constant c.

Induction Step:

T(n) = T([31)+ T(15])+1
<c-[5lte- 5]+l
=cn+1

What went wrong?
Fix? Add a lower order term: Try T(n) < cn— 1.
T(n)<c-[5]-1+4+c-|3]-1+1=cn—-1

Petrick (SCS, UW) CS341 — Module Divide and Conquer Winter 2026

8 /11

Substituion - Changing Variables

T(n) = 2T(| /7)) +logn

Let m=lognso n=2".
Our new recurrence relation is:

T(2™ =2T(2™?) + m

Petrick (SCS, UW) CS341 — Module Divide and Conquer Winter 2026

9/11

Substituion - Changing Variables

T(n) = 2T(| /7)) +logn

Let m=lognso n=2".
Our new recurrence relation is:

T(2™ =2T(2™?) + m

Let S(m) = T(2™) so S(m/2) = T(2™m/?).

Then S(m) = 25(m/2) + m which is a recurrence we know.

Petrick (SCS, UW) CS341 — Module Divide and Conquer Winter 2026

9/11

Substituion - Changing Variables

T(n) = 2T(| /7)) +logn

Let m=lognso n=2".
Our new recurrence relation is:

T(2™ =2T(2™?) + m

Let S(m) = T(2™) so S(m/2) = T(2™m/?).

Then S(m) = 25(m/2) + m which is a recurrence we know.
S(m) € O(mlogm) so T(2™) € O(mlogm) and

T(n) € O((log n)(loglogn))

Petrick (SCS, UW) CS341 — Module Divide and Conquer Winter 2026 9/11

Common Recurrences

We often see recurrences of the form:

Example: Mergesort k =1,a=2,b=2
T(n) = 2T(g) + cn € O(nlog n)
Example: k=1,a=1,b=2
nm=n9+memm
Example: k=1,a=4,b=2

Tm):4ngymmeo@%

Petrick (SCS, UW) CS341 — Module Divide and Conquer Winter 2026

10 /11

Master Theorem

Theorem: Given "
T(n) = aT(E) + cn*

where a>1,b>1,¢c >0,k > 0, then

o(n") if a < b ie. log,a< k
T(n) € ¢ ©(n*logn) if a= bk
O(n'°8»2) if a > bk

Proof: For a rigorous proof, use induction.
Less rigorous, think about the recursion tree.

Petrick (SCS, UW) CS341 — Module Divide and Conquer Winter 2026

11 /11

	Lecture 2 Solving Recurrences
	Examples from previous courses - Sorting
	Solving Recurrence Relations
	Recursion Tree for MergeSort
	Solving Mergesort
	Solving Recurrences by Substitution
	Careful! Watchout!
	Substitution - Changing the Guess
	Substituion - Changing Variables
	Common Recurrences
	Master Theorem

