
Lecture 2 Solving Recurrences

Petrick (SCS, UW) CS341 – Module Divide and Conquer Winter 2026 1 / 11



Examples from previous courses - Sorting

MergeSort(A):
Divide array into left and right halves.
2 Subproblems: Left and right half subarrays, recurse on both.
Merge the two sorted arrays ⇒ O(n) work to conquer.

Analysis:
Best-case/Worst-case: T (n) = 2T (n/2) + O(n) ∈ O(n log n)
Rigorously, T (n) = T (⌊n/2⌋) + T (⌈n/2⌉) + cn

Petrick (SCS, UW) CS341 – Module Divide and Conquer Winter 2026 2 / 11



Solving Recurrence Relations
CS 240 typically only expected you to simply expand a few steps and find
the pattern but introduced the ideas of a recursion tree and the
substitution method.

Quicksort: randomly chooses a pivot, partition to find the location i of
the pivot and create two subproblems. The recursion tree traces the
recursion and shows the work done for each subproblem.

T (n)

T (i) T (n−i−1)

cn

ci c(n−i−1)

Worst-Case (worst luck): T (n) = T (n − 1) + cn ∈ Θ(n2)
Best-Case (best luck): T (n) = 2T (n/2) + cn ∈ Θ(n log n)
Expected Runtime: Θ(n log n)

Petrick (SCS, UW) CS341 – Module Divide and Conquer Winter 2026 3 / 11



Solving Recurrence Relations
CS 240 typically only expected you to simply expand a few steps and find
the pattern but introduced the ideas of a recursion tree and the
substitution method.

Quicksort: randomly chooses a pivot, partition to find the location i of
the pivot and create two subproblems. The recursion tree traces the
recursion and shows the work done for each subproblem.

T (n)

T (i) T (n−i−1)

cn

ci c(n−i−1)

Worst-Case (worst luck): T (n) = T (n − 1) + cn ∈ Θ(n2)
Best-Case (best luck): T (n) = 2T (n/2) + cn ∈ Θ(n log n)
Expected Runtime: Θ(n log n)

Petrick (SCS, UW) CS341 – Module Divide and Conquer Winter 2026 3 / 11



Solving Recurrence Relations
CS 240 typically only expected you to simply expand a few steps and find
the pattern but introduced the ideas of a recursion tree and the
substitution method.

Quicksort: randomly chooses a pivot, partition to find the location i of
the pivot and create two subproblems. The recursion tree traces the
recursion and shows the work done for each subproblem.

T (n)

T (i) T (n−i−1)

cn

ci c(n−i−1)

Worst-Case (worst luck): T (n) = T (n − 1) + cn ∈ Θ(n2)
Best-Case (best luck): T (n) = 2T (n/2) + cn ∈ Θ(n log n)
Expected Runtime: Θ(n log n)

Petrick (SCS, UW) CS341 – Module Divide and Conquer Winter 2026 3 / 11



Recursion Tree for MergeSort

T (n) = 2T (n/2) + cn, if n is even
T (1) = 0, if counting number of comparisons

Recursion Tree where n is a power of 2:

Total work in the recursion tree sums to: c · n log n

Petrick (SCS, UW) CS341 – Module Divide and Conquer Winter 2026 4 / 11



Solving Mergesort

If we want to be precise, the math is not trivial:

T (n) =
{

T
(
⌈n

2⌉
)

+ T
(
⌊n

2⌋
)

+ (n − 1) if n > 1
0 if n = 1

Resolves to T (n) = n⌈log n⌉ − 2⌈log n⌉ + 1

The recursion tree method finds the exact solution of the recurrence when
n is a power of 2, T (n) ∈ O(n log n).

When given n that is not a power of 2, we can also argue that performing
the analysis using n′ = smallest power of 2 larger than n will also give a
precise result since n′ < 2 · n, runtimes are typically increasing and we only
want the growth rate.

Petrick (SCS, UW) CS341 – Module Divide and Conquer Winter 2026 5 / 11



Solving Mergesort

If we want to be precise, the math is not trivial:

T (n) =
{

T
(
⌈n

2⌉
)

+ T
(
⌊n

2⌋
)

+ (n − 1) if n > 1
0 if n = 1

Resolves to T (n) = n⌈log n⌉ − 2⌈log n⌉ + 1

The recursion tree method finds the exact solution of the recurrence when
n is a power of 2, T (n) ∈ O(n log n).

When given n that is not a power of 2, we can also argue that performing
the analysis using n′ = smallest power of 2 larger than n will also give a
precise result since n′ < 2 · n, runtimes are typically increasing and we only
want the growth rate.

Petrick (SCS, UW) CS341 – Module Divide and Conquer Winter 2026 5 / 11



Solving Mergesort

If we want to be precise, the math is not trivial:

T (n) =
{

T
(
⌈n

2⌉
)

+ T
(
⌊n

2⌋
)

+ (n − 1) if n > 1
0 if n = 1

Resolves to T (n) = n⌈log n⌉ − 2⌈log n⌉ + 1

The recursion tree method finds the exact solution of the recurrence when
n is a power of 2, T (n) ∈ O(n log n).

When given n that is not a power of 2, we can also argue that performing
the analysis using n′ = smallest power of 2 larger than n will also give a
precise result since n′ < 2 · n, runtimes are typically increasing and we only
want the growth rate.

Petrick (SCS, UW) CS341 – Module Divide and Conquer Winter 2026 5 / 11



Solving Recurrences by Substitution

Also known as “Lucky Guess”, “Guess and Check”, “Guess and Prove”, ...

T (n) =
{

T
(
⌈n

2⌉
)

+ T
(
⌊n

2⌋
)

+ (n − 1) if n > 1
0 if n = 1

Guess and prove by Induction that T (n) ≤ c · n log n, ∀n ≥ 1.

Base case: For n = 1, T (1) = 0 and c · n log n = 0; i.e. 0 ≤ 0.

Induction Hypothesis: Assume that T (k) ≤ c · k log k for all k < n
where k ≥ 2.

Induction Step: One method to give a rigorous proof is to separate into
even and odd cases. If n is even, we don’t need floors and ceilings. If n is
odd, ...

Petrick (SCS, UW) CS341 – Module Divide and Conquer Winter 2026 6 / 11



Solving Recurrences by Substitution

Also known as “Lucky Guess”, “Guess and Check”, “Guess and Prove”, ...

T (n) =
{

T
(
⌈n

2⌉
)

+ T
(
⌊n

2⌋
)

+ (n − 1) if n > 1
0 if n = 1

Guess and prove by Induction that T (n) ≤ c · n log n, ∀n ≥ 1.

Base case: For n = 1, T (1) = 0 and c · n log n = 0; i.e. 0 ≤ 0.

Induction Hypothesis: Assume that T (k) ≤ c · k log k for all k < n
where k ≥ 2.

Induction Step: One method to give a rigorous proof is to separate into
even and odd cases. If n is even, we don’t need floors and ceilings. If n is
odd, ...

Petrick (SCS, UW) CS341 – Module Divide and Conquer Winter 2026 6 / 11



Solving Recurrences by Substitution

Also known as “Lucky Guess”, “Guess and Check”, “Guess and Prove”, ...

T (n) =
{

T
(
⌈n

2⌉
)

+ T
(
⌊n

2⌋
)

+ (n − 1) if n > 1
0 if n = 1

Guess and prove by Induction that T (n) ≤ c · n log n, ∀n ≥ 1.

Base case: For n = 1, T (1) = 0 and c · n log n = 0; i.e. 0 ≤ 0.

Induction Hypothesis: Assume that T (k) ≤ c · k log k for all k < n
where k ≥ 2.

Induction Step: One method to give a rigorous proof is to separate into
even and odd cases. If n is even, we don’t need floors and ceilings. If n is
odd, ...

Petrick (SCS, UW) CS341 – Module Divide and Conquer Winter 2026 6 / 11



Careful! Watchout!

T (n) = 2T (n/2) + n
Claim: T (n) ∈ O(n)

Prove T (n) ≤ cn, ∀n ≥ n0.

Induction Hypothesis: Assume T (k) ≤ c · k, ∀k < n, k ≥ n0.

T (n) = 2T (n/2) + n
≤ 2c(n/2) + n by the Induction Hypothesis
= (c + 1)n

Conclusion: T (n) ∈ O(n).

The conclusion is clearly incorrect!
The problem is the constant is continuously growing.

Petrick (SCS, UW) CS341 – Module Divide and Conquer Winter 2026 7 / 11



Careful! Watchout!

T (n) = 2T (n/2) + n
Claim: T (n) ∈ O(n)

Prove T (n) ≤ cn, ∀n ≥ n0.

Induction Hypothesis: Assume T (k) ≤ c · k, ∀k < n, k ≥ n0.

T (n) = 2T (n/2) + n
≤ 2c(n/2) + n by the Induction Hypothesis
= (c + 1)n

Conclusion: T (n) ∈ O(n).

The conclusion is clearly incorrect!
The problem is the constant is continuously growing.

Petrick (SCS, UW) CS341 – Module Divide and Conquer Winter 2026 7 / 11



Careful! Watchout!

T (n) = 2T (n/2) + n
Claim: T (n) ∈ O(n)

Prove T (n) ≤ cn, ∀n ≥ n0.

Induction Hypothesis: Assume T (k) ≤ c · k, ∀k < n, k ≥ n0.

T (n) = 2T (n/2) + n
≤ 2c(n/2) + n by the Induction Hypothesis
= (c + 1)n

Conclusion: T (n) ∈ O(n).

The conclusion is clearly incorrect!
The problem is the constant is continuously growing.

Petrick (SCS, UW) CS341 – Module Divide and Conquer Winter 2026 7 / 11



Substitution - Changing the Guess

T (n) =
{

T
(
⌈n

2⌉
)

+ T
(
⌊n

2⌋
)

+ 1 if n > 1
1 if n = 1

Guess T (n) ∈ O(n).
Prove by induction that T (n) ≤ cn for some constant c.

Induction Step:

T (n) = T (⌈n
2⌉) + T (⌊n

2⌋) + 1

≤ c · ⌈n
2⌉ + c · ⌊n

2⌋ + 1

= cn + 1

What went wrong?
Fix? Add a lower order term: Try T (n) ≤ cn − 1.
T (n) ≤ c · ⌈n

2⌉ − 1 + c · ⌊n
2⌋ − 1 + 1 = cn − 1

Petrick (SCS, UW) CS341 – Module Divide and Conquer Winter 2026 8 / 11



Substitution - Changing the Guess

T (n) =
{

T
(
⌈n

2⌉
)

+ T
(
⌊n

2⌋
)

+ 1 if n > 1
1 if n = 1

Guess T (n) ∈ O(n).
Prove by induction that T (n) ≤ cn for some constant c.

Induction Step:

T (n) = T (⌈n
2⌉) + T (⌊n

2⌋) + 1

≤ c · ⌈n
2⌉ + c · ⌊n

2⌋ + 1

= cn + 1

What went wrong?
Fix? Add a lower order term: Try T (n) ≤ cn − 1.
T (n) ≤ c · ⌈n

2⌉ − 1 + c · ⌊n
2⌋ − 1 + 1 = cn − 1

Petrick (SCS, UW) CS341 – Module Divide and Conquer Winter 2026 8 / 11



Substitution - Changing the Guess

T (n) =
{

T
(
⌈n

2⌉
)

+ T
(
⌊n

2⌋
)

+ 1 if n > 1
1 if n = 1

Guess T (n) ∈ O(n).
Prove by induction that T (n) ≤ cn for some constant c.

Induction Step:

T (n) = T (⌈n
2⌉) + T (⌊n

2⌋) + 1

≤ c · ⌈n
2⌉ + c · ⌊n

2⌋ + 1

= cn + 1

What went wrong?

Fix? Add a lower order term: Try T (n) ≤ cn − 1.
T (n) ≤ c · ⌈n

2⌉ − 1 + c · ⌊n
2⌋ − 1 + 1 = cn − 1

Petrick (SCS, UW) CS341 – Module Divide and Conquer Winter 2026 8 / 11



Substitution - Changing the Guess

T (n) =
{

T
(
⌈n

2⌉
)

+ T
(
⌊n

2⌋
)

+ 1 if n > 1
1 if n = 1

Guess T (n) ∈ O(n).
Prove by induction that T (n) ≤ cn for some constant c.

Induction Step:

T (n) = T (⌈n
2⌉) + T (⌊n

2⌋) + 1

≤ c · ⌈n
2⌉ + c · ⌊n

2⌋ + 1

= cn + 1

What went wrong?
Fix? Add a lower order term: Try T (n) ≤ cn − 1.

T (n) ≤ c · ⌈n
2⌉ − 1 + c · ⌊n

2⌋ − 1 + 1 = cn − 1

Petrick (SCS, UW) CS341 – Module Divide and Conquer Winter 2026 8 / 11



Substitution - Changing the Guess

T (n) =
{

T
(
⌈n

2⌉
)

+ T
(
⌊n

2⌋
)

+ 1 if n > 1
1 if n = 1

Guess T (n) ∈ O(n).
Prove by induction that T (n) ≤ cn for some constant c.

Induction Step:

T (n) = T (⌈n
2⌉) + T (⌊n

2⌋) + 1

≤ c · ⌈n
2⌉ + c · ⌊n

2⌋ + 1

= cn + 1

What went wrong?
Fix? Add a lower order term: Try T (n) ≤ cn − 1.
T (n) ≤ c · ⌈n

2⌉ − 1 + c · ⌊n
2⌋ − 1 + 1 = cn − 1

Petrick (SCS, UW) CS341 – Module Divide and Conquer Winter 2026 8 / 11



Substituion - Changing Variables

T (n) = 2T (⌊
√

n⌋) + log n
Let m = log n so n = 2m.
Our new recurrence relation is:

T (2m) = 2T (2m/2) + m

Let S(m) = T (2m) so S(m/2) = T (2m/2).

Then S(m) = 2S(m/2) + m which is a recurrence we know.

S(m) ∈ O(m log m) so T (2m) ∈ O(m log m) and

T (n) ∈ O((log n)(log log n))

Petrick (SCS, UW) CS341 – Module Divide and Conquer Winter 2026 9 / 11



Substituion - Changing Variables

T (n) = 2T (⌊
√

n⌋) + log n
Let m = log n so n = 2m.
Our new recurrence relation is:

T (2m) = 2T (2m/2) + m

Let S(m) = T (2m) so S(m/2) = T (2m/2).

Then S(m) = 2S(m/2) + m which is a recurrence we know.

S(m) ∈ O(m log m) so T (2m) ∈ O(m log m) and

T (n) ∈ O((log n)(log log n))

Petrick (SCS, UW) CS341 – Module Divide and Conquer Winter 2026 9 / 11



Substituion - Changing Variables

T (n) = 2T (⌊
√

n⌋) + log n
Let m = log n so n = 2m.
Our new recurrence relation is:

T (2m) = 2T (2m/2) + m

Let S(m) = T (2m) so S(m/2) = T (2m/2).

Then S(m) = 2S(m/2) + m which is a recurrence we know.

S(m) ∈ O(m log m) so T (2m) ∈ O(m log m) and

T (n) ∈ O((log n)(log log n))

Petrick (SCS, UW) CS341 – Module Divide and Conquer Winter 2026 9 / 11



Common Recurrences
We often see recurrences of the form:

T (n) = aT (n
b ) + cnk

Example: Mergesort k = 1, a = 2, b = 2

T (n) = 2T (n
2) + cn ∈ O(n log n)

Example: k = 1, a = 1, b = 2

T (n) = T (n
2) + cn ∈ O(n)

Example: k = 1, a = 4, b = 2

T (n) = 4T (n
2) + cn ∈ O(n2)

Petrick (SCS, UW) CS341 – Module Divide and Conquer Winter 2026 10 / 11



Master Theorem

Theorem: Given
T (n) = aT (n

b ) + cnk

where a ≥ 1, b > 1, c > 0, k ≥ 0, then

T (n) ∈


Θ(nk) if a < bk i.e. logb a < k
Θ(nk log n) if a = bk

Θ(nlogb a) if a > bk

Proof: For a rigorous proof, use induction.
Less rigorous, think about the recursion tree.

Petrick (SCS, UW) CS341 – Module Divide and Conquer Winter 2026 11 / 11


	Lecture 2 Solving Recurrences
	Examples from previous courses - Sorting
	Solving Recurrence Relations
	Recursion Tree for MergeSort
	Solving Mergesort
	Solving Recurrences by Substitution
	Careful! Watchout!
	Substitution - Changing the Guess
	Substituion - Changing Variables
	Common Recurrences
	Master Theorem

