
Module 5 Greedy Algorithms

Thanks to Anna Lubiw and other previous CS 341 instructors.

Optimization Problems
Greedy Algorithms
Intro Example: Making Change
Interval Scheduling
Exchange Proof
Fractional Knapsack

Petrick (SCS, UW) CS341 – Module Greedy Algorithms Winter 2025 1 / 23

Optimization Problems

Problem: Given a problem instance, find a feasible solution that
maximizes (or minimizes) a certain objective function.

Problem Instance: Input for the specified problem.

Problem Constraints: Requirements that must be satisfied by any
feasible solution.

Feasible Solution: For any problem instance I, feasible(I) is the set of all
outputs (i.e., solutions) for the instance I that satisfy the given constraints.

Objective Function: A function f :feasible(I) → R+ ∪ {0}. We often
think of f as being a profit or a cost function.

Optimal Solution: A feasible solution X ∈ feasible(I) such that the profit
f (X) is maximized (or the cost f (X) is minimized).

Petrick (SCS, UW) CS341 – Module Greedy Algorithms Winter 2025 2 / 23

Making Change

Problem
Making Change
Instance: A set C of coin denominations for a coin system and a given
amount M.
Find: The minimum number of coins of denominations from C that sum
to M.

For example: Make change for $3.47 using the Canadian coin system.

How did you make your choice for each coin?
Is your solution the minimal number of coins possible?
Does this work for all coin systems?

Petrick (SCS, UW) CS341 – Module Greedy Algorithms Winter 2025 3 / 23

Greedy Algorithms

Partial Solutions: Given a problem instance I, it should be possible to
write a feasible solution X as a tuple [x1, x2, . . . , xn] for some integer n,
where xi ∈ X for all i . A tuple [x1, . . . , xi] where i < n is a partial solution
if no constraints are violated.
Note: it may be the case that a partial solution cannot be extended to a
feasible solution.

Choice Set: For a partial solution X = [x1, . . . , xi] where i < n, we define
the choice set

choice(X) = {y ∈ X : [x1, . . . , xi , y] is a partial solution}.

Petrick (SCS, UW) CS341 – Module Greedy Algorithms Winter 2025 4 / 23

Greedy Algorithms

Local Evaluation Criterion: For any y ∈ X , g(y) is a
local evaluation criterion that measures the cost or profit of including y in
a (partial) solution.

Extension: Given a partial solution X = [x1, . . . , xi] where i < n, choose
y ∈ choice(X) so that g(y) is as small (or large) as possible. Update X to
be the (i + 1)-tuple [x1, . . . , xi , y].

Greedy Algorithm Starting with the “empty” partial solution, repeatedly
extend it until a feasible solution X is constructed. This feasible solution
may or may not be optimal.

Petrick (SCS, UW) CS341 – Module Greedy Algorithms Winter 2025 5 / 23

Greedy Algorithms

Greedy algorithms do no looking ahead and no backtracking .
Greedy algorithms can usually be implemented efficiently. Often they
consist of a preprocessing step based on the function g , followed by a
single pass through the data.
In a greedy algorithm, only one feasible solution is constructed.
The execution of a greedy algorithm is based on local criteria (i.e.,
the values of the function g).
Correctness: For certain greedy algorithms, it is possible to prove that
they always yield optimal solutions. However, these proofs can be
tricky and complicated!

Petrick (SCS, UW) CS341 – Module Greedy Algorithms Winter 2025 6 / 23

Interval Selection

Problem
Interval Scheduling or Activity Selection
Instance: A set I = {1, . . . , n} of intervals.
For 1 ≤ i ≤ n, i = [si , fi), where si is the start time and fi is the
finish time of i .
Find: A subset S ⊆ I of pairwise disjoint intervals of maximum size
(i.e., one that maximizes |S|).

Petrick (SCS, UW) CS341 – Module Greedy Algorithms Winter 2025 7 / 23

Possible Greedy Strategies for Interval Scheduling

1 Select the activity/interval that has the earliest start time; i.e. local
evaluation criterion is si .

2 Select the activity that has the shortest length; i.e. the local
evaluation criterion is fi − si .

3 Select the activity with the fewest conflicts with other activities.
4 Select the activity with the earliest finishing time; i.e. the local

evaluation criterion is fi .
Note: Choices above also assume that the selection chosen is also disjoint
from all previously chosen activities.

Does one of these strategies yield a correct greedy algorithm?

Petrick (SCS, UW) CS341 – Module Greedy Algorithms Winter 2025 8 / 23

Select Interval with Earliest Finish Time

1. Sort intervals 1..n by finish time and relabel so f1 ≤ . . . ≤ fn
2. S = ∅
3. for i ← 1 to n do
4. if interval i is pairwise disjoint with all intervals in S then
5. S ← S ∪ {i}

Analysis: O(n log n) to sort + O(n) loop ⇒ O(n log n)

Correctness: 2 approaches
1 Greedy always stays ahead
2 “Exchange” proof

Petrick (SCS, UW) CS341 – Module Greedy Algorithms Winter 2025 9 / 23

Proof of Correctness - Greedy always stays ahead

Lemma: The greedy algorithm (select earliest finish time) returns a
maximum size set A of disjoint activities.

Proof: Let A = {a1, . . . , ak}, sorted by finish time.

Compare A to an optimum solution B = {b1, . . . , bℓ}, sorted by finish
time. Thus, ℓ ≥ k and we want to prove ℓ = k.

Idea: At every step i , we can do at least as good by choosing ai .

Claim: a1, . . . , ai , bi+1, . . . , bℓ is an optimal solution for all i .

Petrick (SCS, UW) CS341 – Module Greedy Algorithms Winter 2025 10 / 23

Proof of Correctness - Greedy always stays ahead

Lemma: The greedy algorithm (select earliest finish time) returns a
maximum size set A of disjoint activities.

Proof: Let A = {a1, . . . , ak}, sorted by finish time.

Compare A to an optimum solution B = {b1, . . . , bℓ}, sorted by finish
time. Thus, ℓ ≥ k and we want to prove ℓ = k.

Idea: At every step i , we can do at least as good by choosing ai .

Claim: a1, . . . , ai , bi+1, . . . , bℓ is an optimal solution for all i .

Petrick (SCS, UW) CS341 – Module Greedy Algorithms Winter 2025 10 / 23

Greedy always stays ahead - Induction!

Basis: i = 1
a1 had the earliest finish time of all activities so finish(a1) ≤ finish(b1).
Thus, a1 is disjoint from all bi for 2 ≤ i ≤ ℓ.
Thus, we can replace b1 with a1.

Induction Step: Suppose a1, . . . , ai−1, bi , . . . , bℓ is an optimal solution.

bi does not intersect ai−1 so the greedy algorithm could have chosen it;
however, it chose ai instead, so finish(ai) ≤ finish(bi).

ai is then also disjoint from from all bk for i + 1 ≤ k ≤ ℓ.
Thus, we can replace bi with ai .

This proves the claim. To finish proving the lemma we argue that if k < ℓ
then a1, . . . , ak , bk+1, . . . , bℓ is an optimal solution. But then the greedy
algorithm would have more choices after ak .

Petrick (SCS, UW) CS341 – Module Greedy Algorithms Winter 2025 11 / 23

Greedy always stays ahead - Induction!

Basis: i = 1
a1 had the earliest finish time of all activities so finish(a1) ≤ finish(b1).
Thus, a1 is disjoint from all bi for 2 ≤ i ≤ ℓ.
Thus, we can replace b1 with a1.

Induction Step: Suppose a1, . . . , ai−1, bi , . . . , bℓ is an optimal solution.

bi does not intersect ai−1 so the greedy algorithm could have chosen it;
however, it chose ai instead, so finish(ai) ≤ finish(bi).

ai is then also disjoint from from all bk for i + 1 ≤ k ≤ ℓ.
Thus, we can replace bi with ai .

This proves the claim. To finish proving the lemma we argue that if k < ℓ
then a1, . . . , ak , bk+1, . . . , bℓ is an optimal solution. But then the greedy
algorithm would have more choices after ak .

Petrick (SCS, UW) CS341 – Module Greedy Algorithms Winter 2025 11 / 23

Greedy always stays ahead - Induction!

Basis: i = 1
a1 had the earliest finish time of all activities so finish(a1) ≤ finish(b1).
Thus, a1 is disjoint from all bi for 2 ≤ i ≤ ℓ.
Thus, we can replace b1 with a1.

Induction Step: Suppose a1, . . . , ai−1, bi , . . . , bℓ is an optimal solution.

bi does not intersect ai−1 so the greedy algorithm could have chosen it;
however, it chose ai instead, so finish(ai) ≤ finish(bi).

ai is then also disjoint from from all bk for i + 1 ≤ k ≤ ℓ.
Thus, we can replace bi with ai .

This proves the claim. To finish proving the lemma we argue that if k < ℓ
then a1, . . . , ak , bk+1, . . . , bℓ is an optimal solution. But then the greedy
algorithm would have more choices after ak .

Petrick (SCS, UW) CS341 – Module Greedy Algorithms Winter 2025 11 / 23

Scheduling to Minimize Lateness

Suppose you are given a number of tasks to complete:

Job Time Required Deadline
CS341 4 hours in 9 hours
Stat231 2 hours in 6 hours
Psych 4 hours in 14 hours
CS350 10 hours in 25 hours

Can you do everything by its deadline?
Greedy Strategy?
Can we generalize this problem?

Petrick (SCS, UW) CS341 – Module Greedy Algorithms Winter 2025 12 / 23

Scheduling to Minimize Lateness

Problem
Scheduling to Minimize Lateness
Instance: A set of jobs {1, . . . , n} where job i requires time ti to
complete and has a deadline of di .
Find: A schedule, allowing some jobs to be late but minimizing the
maximum lateness.

Note: this is different from minimizing the sum of lateness or minimizing
average lateness.

A schedule computes all jobs on time ⇐⇒ its maximum lateness is 0.

Petrick (SCS, UW) CS341 – Module Greedy Algorithms Winter 2025 13 / 23

Exchange Proofs
General Idea: Show how we can covert an optimal solution into the greedy
solution.

Let G be the solution produced by the greedy algorithm.
Let O be an optimal solution.
If G is the same as O then greedy is also optimal.
If G ̸= O then find a pair of items that are out of order in O when
compared with G .
Show that by exchanging the order of these two items, we create a
new solution that is better (or at least no worse); i.e. the resulting
solution remains optimal.
Note: the reasoning is typically based on how the greedy algorithm
makes its choice.
By making a number of exchanges we will obtain the greedy solution
(similar to bubblesort) and since each exchange makes the solution no
worse, the greedy algorithm is also optimal.

Petrick (SCS, UW) CS341 – Module Greedy Algorithms Winter 2025 14 / 23

Knapsack Problems

Problem
Knapsack
Instance: A set if items 1, . . . , n with values v1, . . . , vn, weights
w1, . . . , wn and a capacity, W . These are all positive integers.
Feasible solution: An n-tuple X = [x1, . . . , xn] where

∑n
i=1 wixi ≤W .

In the 0-1 Knapsack problem (often denoted just as Knapsack), we
require that xi ∈ {0, 1}, 1 ≤ i ≤ n.
In the Rational Knapsack or Fractional Knapsack problem, we require
that xi ∈ Q and 0 ≤ xi ≤ 1, 1 ≤ i ≤ n.
Find: A feasible solution X that maximizes

∑n
i=1 vixi .

Note: Q is the set of rational numbers.

Petrick (SCS, UW) CS341 – Module Greedy Algorithms Winter 2025 15 / 23

Possible Greedy Strategies for Knapsack Problems

1 Consider the items in decreasing order of value (i.e., the local
evaluation criterion is pi).

2 Consider the items in increasing order of weight (i.e., the local
evaluation criterion is wi).

3 Consider the items in decreasing order of value divided by weight (i.e.,
the local evaluation criterion is vi/wi).

Does one of these strategies yield a correct greedy algorithm for the
0-1 Knapsack or Fractional Knapsack problem?

Petrick (SCS, UW) CS341 – Module Greedy Algorithms Winter 2025 16 / 23

Knapsack Problems

Consider the following example where capacity W = 6.

Item i Value vi Weight wi vi/wi
1 12 4 3
2 7 3 2.5
3 6 3 2

Does ordering by value per weight help?
Is the optimal solution for 0-1 Knapsack the same as for Fractional
Knapsack?

0-1 Knapsack: none of the greedy choices seem to be optimal.
Fractional Knapsack: choosing highest value per weight is optimal.

Petrick (SCS, UW) CS341 – Module Greedy Algorithms Winter 2025 17 / 23

Knapsack Problems

Consider the following example where capacity W = 6.

Item i Value vi Weight wi vi/wi
1 12 4 3
2 7 3 2.5
3 6 3 2

Does ordering by value per weight help?
Is the optimal solution for 0-1 Knapsack the same as for Fractional
Knapsack?
0-1 Knapsack: none of the greedy choices seem to be optimal.
Fractional Knapsack: choosing highest value per weight is optimal.

Petrick (SCS, UW) CS341 – Module Greedy Algorithms Winter 2025 17 / 23

Greedy Algorithm for Fractional Knapsack
Greedy Algorithm: Choose item with highest value per weight and choose
as much of it as possible.

xi is the weight of item i taken
1. Sort items 1..n by value per weight and relabel so (v1/w1) ≥ . . . ≥ (vn/wn)
2. freeW ←W
3. for i ← 1 to n do
4. xi ← min{wi , freeW }
5. freeW ← freeW − xi

A solution then looks like

Item: 1 2 . . . j j + 1 . . . n
Weight Taken: x1 x2 . . . xj 0 . . . 0

Final weight is
∑

xi = W (if
∑

wi ≥W)
Final value:

∑ vi
wi

xi
Running time: O(n log n) to sort, O(n) to choose weights for each item.

Petrick (SCS, UW) CS341 – Module Greedy Algorithms Winter 2025 18 / 23

Greedy Algorithm for Fractional Knapsack is correct

Claim: The greedy algorithm gives the optimal solution to the fractional
knapsack problem.

Proof: Assume items are ordered by vi
wi

.
Let the greedy solution be x1, x2, . . . , xk−1, xk , . . . , xℓ, . . . , xn.
Let an optimal solution be y1, y2, . . . , yk−1, yk , . . . , yℓ, . . . , yn.

Suppose y is an optimal solution that
matches x on a maximum number of indices, say M indices.

If M = n then we are done, so assume M < n; i.e. this implies the greedy
solution is not optimal

(so we should then be able to find a contradiction).

Contradiction: show that there exists an optimal solution that matches x
on at least M + 1 indicies.

Petrick (SCS, UW) CS341 – Module Greedy Algorithms Winter 2025 19 / 23

Greedy Algorithm for Fractional Knapsack is correct

Claim: The greedy algorithm gives the optimal solution to the fractional
knapsack problem.

Proof: Assume items are ordered by vi
wi

.
Let the greedy solution be x1, x2, . . . , xk−1, xk , . . . , xℓ, . . . , xn.
Let an optimal solution be y1, y2, . . . , yk−1, yk , . . . , yℓ, . . . , yn.

Suppose y is an optimal solution that
matches x on a maximum number of indices, say M indices.

If M = n then we are done, so assume M < n; i.e. this implies the greedy
solution is not optimal (so we should then be able to find a contradiction).

Contradiction: show that there exists an optimal solution that matches x
on at least M + 1 indicies.

Petrick (SCS, UW) CS341 – Module Greedy Algorithms Winter 2025 19 / 23

The Stable Marriage Problem

Note: rephrased using co-op students and employers offering jobs.

Problem
Stable Marriage
Instance: A set of n co-op students S = [s1, . . . , sn], and a set of n
employers offering jobs, E = [e1, . . . , en].
Each employer ei has a preference ranking of the n students, and each
student si has a preference ranking of the n employers:
pref(ei , j) = sk if sk is the j-th preference of employer ei and
pref(si , j) = ek if ek is the j-th favourite employer of student si .
Find: A matching of the n students with the n employers such that there
does not exist a pair (si , ej) who are not matched to each other, but prefer
each other to their existing matches.
A matching with this this property is called a stable matching.

Petrick (SCS, UW) CS341 – Module Greedy Algorithms Winter 2025 20 / 23

Overview of the Gale-Shapley Algorithm

Employers offer jobs to students.
If a student accepts a job offer, then the pair are matched; the
student is employed.
An unemployed student must accept a job if they are offered one.

However, if an employed student receives an offer from an employer
whom they prefer to their current match, then they cancel their
existing match and the student becomes employed by (matched with)
their new employer; the previous employer no longer has a match.
If an employed student receives an offer from an employer, but they
prefer the job they already have, the offer is rejected.
Matched/Employed students never become unmatched/unemployed.
An employer might make a number of offers (up to n); the order of
the offers is determined by the employer’s preference list.

Petrick (SCS, UW) CS341 – Module Greedy Algorithms Winter 2025 21 / 23

Overview of the Gale-Shapley Algorithm

Employers offer jobs to students.
If a student accepts a job offer, then the pair are matched; the
student is employed.
An unemployed student must accept a job if they are offered one.
However, if an employed student receives an offer from an employer
whom they prefer to their current match, then they cancel their
existing match and the student becomes employed by (matched with)
their new employer; the previous employer no longer has a match.

If an employed student receives an offer from an employer, but they
prefer the job they already have, the offer is rejected.
Matched/Employed students never become unmatched/unemployed.
An employer might make a number of offers (up to n); the order of
the offers is determined by the employer’s preference list.

Petrick (SCS, UW) CS341 – Module Greedy Algorithms Winter 2025 21 / 23

Overview of the Gale-Shapley Algorithm

Employers offer jobs to students.
If a student accepts a job offer, then the pair are matched; the
student is employed.
An unemployed student must accept a job if they are offered one.
However, if an employed student receives an offer from an employer
whom they prefer to their current match, then they cancel their
existing match and the student becomes employed by (matched with)
their new employer; the previous employer no longer has a match.
If an employed student receives an offer from an employer, but they
prefer the job they already have, the offer is rejected.
Matched/Employed students never become unmatched/unemployed.
An employer might make a number of offers (up to n); the order of
the offers is determined by the employer’s preference list.

Petrick (SCS, UW) CS341 – Module Greedy Algorithms Winter 2025 21 / 23

Gale-Shapley Algorithm

Gale-Shapley(S, E , pref)
1. Match← ∅
2. while there exists an employer ei still looking to hire do
3. Let sj be the next student in ei ’s preference list
4. if sj is unemployed then
5. Match← Match ∪ {(ei , sj)}
6. else
7. if sj prefers ei (over their current match ek) then
8. Match← Match{(ek , sj)} ∪ {(ei , sj)}

Note: employer ek is now looking to hire again
9. return Match

Petrick (SCS, UW) CS341 – Module Greedy Algorithms Winter 2025 22 / 23

Questions

How do we prove that the Gale-Shapley algorithm always terminates?
How many iterations does this algorithm require in the worst case?
How do we prove that this algorithm is correct, i.e., that it finds a
stable matching?
Is there an efficient way to identify an employer still looking to hire
at any point in the algorithm? What data structure would be helpful
in doing this?
What can we say about the complexity of the algorithm?

Petrick (SCS, UW) CS341 – Module Greedy Algorithms Winter 2025 23 / 23

	Module 5 Greedy Algorithms
	Optimization Problems
	Making Change
	Greedy Algorithms
	Greedy Algorithms
	Greedy Algorithms
	Interval Selection
	Possible Greedy Strategies for Interval Scheduling
	Select Interval with Earliest Finish Time
	Proof of Correctness - Greedy always stays ahead
	Greedy always stays ahead - Induction!
	Scheduling to Minimize Lateness
	Scheduling to Minimize Lateness
	Exchange Proofs
	Knapsack Problems
	Possible Greedy Strategies for Knapsack Problems
	Knapsack Problems
	Greedy Algorithm for Fractional Knapsack
	Greedy Algorithm for Fractional Knapsack is correct
	The Stable Marriage Problem
	Overview of the Gale-Shapley Algorithm
	Gale-Shapley Algorithm
	Questions

