
Module Graph Algorithms

Thanks to Anna Lubiw and other previous CS 341 instructors.

Graph Terminology and Storing Graphs
Exploring Graphs
Breadth First Search and Properties of BFS
Applications of BFS: Bipartite Testing
Depth First Search and Properties of DFS
DFS on Directed Graphs and Applications
Minimum Spanning Trees, Kruskal’s Algorithm, Prim’s Algorithm
Short Paths on Weighted Graphs
Dijkstra’s Algorithm
Dynamic Programming: Bellman-Ford, Floyd-Warshall

Petrick (SCS, UW) CS341 – Module Graph Algorithms Winter 2025 1 / 35

Graph Terminology
Definition: A graph G = (V , E) where

V is a set of vertices where |V | = n and
E is a set of edges, E ⊆ V × V , where |E | = m and m ≤ n2.

Edges can be undirected (unordered pairs) or directed (ordered pairs). A
graph with directed edges is called a directed graph or digraph.

Basic Notations
Convention: vertices are {1, 2, . . . , n} but sometimes written
v1, . . . , vn or a, b, c,
u, v ∈ V are adjacent or neighbours if (u, v) ∈ E
v ∈ V is incident to e ∈ E if e = (v , u)
deg(v) = number of incident edges
For a directed graph, we define indegree(v) and outdegree(v) as the
number of incident edges direct into v and directed out of v .

In practice, vertices and edges may have names or other associated
information but our algorithms will be for abstract graphs.

Petrick (SCS, UW) CS341 – Module Graph Algorithms Winter 2025 2 / 35

Graph Terminology
Definition: A graph G = (V , E) where

V is a set of vertices where |V | = n and
E is a set of edges, E ⊆ V × V , where |E | = m and m ≤ n2.

Edges can be undirected (unordered pairs) or directed (ordered pairs). A
graph with directed edges is called a directed graph or digraph.

Basic Notations
Convention: vertices are {1, 2, . . . , n} but sometimes written
v1, . . . , vn or a, b, c,
u, v ∈ V are adjacent or neighbours if (u, v) ∈ E
v ∈ V is incident to e ∈ E if e = (v , u)
deg(v) = number of incident edges
For a directed graph, we define indegree(v) and outdegree(v) as the
number of incident edges direct into v and directed out of v .

In practice, vertices and edges may have names or other associated
information but our algorithms will be for abstract graphs.

Petrick (SCS, UW) CS341 – Module Graph Algorithms Winter 2025 2 / 35

Graph Terminology Continued

A path is a sequence of vertices v1, v2, . . . , vk such that (vi , vi+1) ∈ E
for i = 1, . . . , k − 1. A simple path does not repeat vertices.
A cycle is a path that starts and ends at the same vertex. A
simple cycle does not repeat any vertices except the start/end.
Note: some sources use “path” to mean a simple path.
A tree is a connected (undirect) graph with no cycles.
An undirected graph is connected if there exists a path joining all
pairs u, v ∈ V .
A connected component of a graph is the maximal connected
subgraph.

The study of graphs is know as Graph Theory.
Origin from the Königsberg bridge problem (Euler 1735).
Many applications! - networks, transportation, social, scheduling,
game configurations, etc

Petrick (SCS, UW) CS341 – Module Graph Algorithms Winter 2025 3 / 35

Graph Terminology Continued

A path is a sequence of vertices v1, v2, . . . , vk such that (vi , vi+1) ∈ E
for i = 1, . . . , k − 1. A simple path does not repeat vertices.
A cycle is a path that starts and ends at the same vertex. A
simple cycle does not repeat any vertices except the start/end.
Note: some sources use “path” to mean a simple path.
A tree is a connected (undirect) graph with no cycles.
An undirected graph is connected if there exists a path joining all
pairs u, v ∈ V .
A connected component of a graph is the maximal connected
subgraph.

The study of graphs is know as Graph Theory.
Origin from the Königsberg bridge problem (Euler 1735).
Many applications! - networks, transportation, social, scheduling,
game configurations, etc

Petrick (SCS, UW) CS341 – Module Graph Algorithms Winter 2025 3 / 35

Storing Graphs: Adjacency Matrices
There are two main data structures used to store a graph: an
adjacency matrix and a set of adjacency lists.

The adjacency matrix of G is an n by n matrix A, requiring O(n2) space,
which is indexed by V , such that

A[i , j] =
{

1 if (i , j) ∈ E
0 otherwise

There are exactly 2m entries of A equal to 1.

If G is a directed graph, then

A[i , j] =
{

1 if (i , j) ∈ E
0 otherwise

For a directed graph, there are exactly m entries of A equal to 1.

Petrick (SCS, UW) CS341 – Module Graph Algorithms Winter 2025 4 / 35

Storing Graphs: Adjacency Lists

An adjacency list representation of G consists of n linked lists.
For every u ∈ V , there is a linked list (called an adjacency list)
which is named Adj[u].
For every v ∈ V such that uv ∈ E , there is a node in Adj[u] labelled
v . (This definition is used for both directed and undirected graphs.)
In an undirected graph, every edge uv corresponds to nodes in two
adjacency lists: there is a node v in Adj[u] and a node u in Adj[v].
In a directed graph, every edge corresponds to a node in only one
adjacency list.

Petrick (SCS, UW) CS341 – Module Graph Algorithms Winter 2025 5 / 35

Operations: Adjacency Matrix vs Adjacency Lists

Operation Adjacency Matrix Adjacency Lists

Space O(n2) O(n + m)

(u, v) ∈ E? Θ(1) O(1 + deg(u))

List v ′s neighbours

Θ(n) Θ(1 + deg(v))

List all edges Θ(n2) Θ(n + m)

The algorithms we focus on will typically require listing neighbours and all
edges so we’ll use adjacency lists.

Petrick (SCS, UW) CS341 – Module Graph Algorithms Winter 2025 6 / 35

Operations: Adjacency Matrix vs Adjacency Lists

Operation Adjacency Matrix Adjacency Lists

Space O(n2) O(n + m)

(u, v) ∈ E? Θ(1) O(1 + deg(u))

List v ′s neighbours Θ(n) Θ(1 + deg(v))

List all edges

Θ(n2) Θ(n + m)

The algorithms we focus on will typically require listing neighbours and all
edges so we’ll use adjacency lists.

Petrick (SCS, UW) CS341 – Module Graph Algorithms Winter 2025 6 / 35

Operations: Adjacency Matrix vs Adjacency Lists

Operation Adjacency Matrix Adjacency Lists

Space O(n2) O(n + m)

(u, v) ∈ E? Θ(1) O(1 + deg(u))

List v ′s neighbours Θ(n) Θ(1 + deg(v))

List all edges Θ(n2) Θ(n + m)

The algorithms we focus on will typically require listing neighbours and all
edges so we’ll use adjacency lists.

Petrick (SCS, UW) CS341 – Module Graph Algorithms Winter 2025 6 / 35

Exploring Graphs

To explore a graph, we want to visit all vertices, or all vertices starting at
some source. This will help us find shortest paths and connected
components.

Two typical strategies are breadth first search and depth first search. To
keep track of where we have been and where we plan to go next, we may
mark vertices as undiscovered/discovered or unexplored/explored.

A vertex is discovered meaning we have identified it as a place we
want to go but have not yet visited.
A vertex has been explored once we visit the node and perform the
work needed to be done at the node.
undiscovered ⇒ discovered but unexplored ⇒ explored

Petrick (SCS, UW) CS341 – Module Graph Algorithms Winter 2025 7 / 35

Breadth First Search (BFS)
Breadth First Search (BFS)

BFS begins at a specified vertex v0.
A cautious search: “spreads out” from v0 by checking everything one
edge away, then two, etc.
First, from v0 discover all neighbours of v0.
Next, explore all neighbours of v0 to discover the neighbours of
neighbours (2 edges away).
How do we know if a neighbour of a neighbour (2 edges away) was
already handled as a neighbour of v0?

It is marked as discovered.
Then, explore all neighbours of neighbours to identify vertices that
are 3 edges away from v0 (but have not previously been discovered).
This process continues until all vertices have been explored.

Implementation: Use a queue to keep track of the vertices that have
been discovered but must still be explored.
Also useful to store parent and level information.

Petrick (SCS, UW) CS341 – Module Graph Algorithms Winter 2025 8 / 35

Breadth First Search (BFS)
Breadth First Search (BFS)

BFS begins at a specified vertex v0.
A cautious search: “spreads out” from v0 by checking everything one
edge away, then two, etc.
First, from v0 discover all neighbours of v0.
Next, explore all neighbours of v0 to discover the neighbours of
neighbours (2 edges away).
How do we know if a neighbour of a neighbour (2 edges away) was
already handled as a neighbour of v0? It is marked as discovered.
Then, explore all neighbours of neighbours to identify vertices that
are 3 edges away from v0 (but have not previously been discovered).
This process continues until all vertices have been explored.

Implementation: Use a queue to keep track of the vertices that have
been discovered but must still be explored.
Also useful to store parent and level information.

Petrick (SCS, UW) CS341 – Module Graph Algorithms Winter 2025 8 / 35

Breadth First Search (BFS)
Explore(v)
1. for each neighbour u of v do
2. if mark(u) = undiscovered then
3. mark(u) ← discovered
4. parent(u) ← v
5. level(u) ← level(v) + 1
6. Add u to Queue

BFS
1. Initialization: Mark all vertices as undiscovered
2. Pick initial vertex v0
3. parent(v0) ← ∅
4. level(v0) ← 0
5. Add v0 to Queue
6. Mark(v0) ← discovered
7. while Queue is not empty do
8. v ← remove from Queue
9. Explore(v)

Petrick (SCS, UW) CS341 – Module Graph Algorithms Winter 2025 9 / 35

Breadth First Search (BFS)

Runtime: We explore each vertex once and check all incident edges:

O(n +
∑
v∈V

deg(v)) = O(n + m)

Note:
∑
v∈V

deg(v)= 2m since we count each edge twice.

Properties
The parent pointers create a directed tree (because each addition
adds a new vertex u, with parent v in the tree).
u is connected to v0 if and only if BFS from v0 reaches u.

Lemma: The level of a vertex v = length of shortest path from v0 to v .

Proof:
Claim 1: v in level i implies there is a path v0 to v of i edges.
Claim 2: v in level i implies every path v0 to v has ≥ i edges.

Petrick (SCS, UW) CS341 – Module Graph Algorithms Winter 2025 10 / 35

Breadth First Search (BFS)

Runtime: We explore each vertex once and check all incident edges:
O(n +

∑
v∈V

deg(v)) = O(n + m)

Note:
∑
v∈V

deg(v)= 2m since we count each edge twice.

Properties
The parent pointers create a directed tree (because each addition
adds a new vertex u, with parent v in the tree).
u is connected to v0 if and only if BFS from v0 reaches u.

Lemma: The level of a vertex v = length of shortest path from v0 to v .

Proof:
Claim 1: v in level i implies there is a path v0 to v of i edges.
Claim 2: v in level i implies every path v0 to v has ≥ i edges.

Petrick (SCS, UW) CS341 – Module Graph Algorithms Winter 2025 10 / 35

Breadth First Search (BFS)

Runtime: We explore each vertex once and check all incident edges:
O(n +

∑
v∈V

deg(v)) = O(n + m)

Note:
∑
v∈V

deg(v)= 2m since we count each edge twice.

Properties
The parent pointers create a directed tree (because each addition
adds a new vertex u, with parent v in the tree).
u is connected to v0 if and only if BFS from v0 reaches u.

Lemma: The level of a vertex v = length of shortest path from v0 to v .

Proof:
Claim 1: v in level i implies there is a path v0 to v of i edges.
Claim 2: v in level i implies every path v0 to v has ≥ i edges.

Petrick (SCS, UW) CS341 – Module Graph Algorithms Winter 2025 10 / 35

Proof of Claim 1

Claim 1: v in level i implies there is a path v0 to v of i edges.

Proof: By induction on the level, i .

Basis: i = 0: the only node on level 0 is the root of the tree so v = v0.

Induction hypothesis: For a vertex v on level i − 1, the path from v0 to
v is i − 1 edges.

Induction step: Let v be in level i .
Since it is a tree, the parent(v) is in level i − 1.
By the induction hypothesis, there is a path from v0 to parent(v) of i − 1
edges. Extending the path to v , adding edge (parent(v), v) gives a path
from v0 to v of i edges.

Petrick (SCS, UW) CS341 – Module Graph Algorithms Winter 2025 11 / 35

Proof of Claim 1

Claim 1: v in level i implies there is a path v0 to v of i edges.

Proof: By induction on the level, i .

Basis: i = 0: the only node on level 0 is the root of the tree so v = v0.

Induction hypothesis: For a vertex v on level i − 1, the path from v0 to
v is i − 1 edges.

Induction step: Let v be in level i .
Since it is a tree, the parent(v) is in level i − 1.
By the induction hypothesis, there is a path from v0 to parent(v) of i − 1
edges. Extending the path to v , adding edge (parent(v), v) gives a path
from v0 to v of i edges.

Petrick (SCS, UW) CS341 – Module Graph Algorithms Winter 2025 11 / 35

Proof of Claim 2

Claim 2: v in level i implies every path v0 to v has ≥ i edges.

Proof: We will prove that if there is a path v0 to v of j edges then v is in
level ≤ j by induction on j .

Basis: j = 0: the only node reachable on 0 edges from v0 is v0 itself;
which is on level 0.

Induction hypothesis: For a vertex v where the path from v0 to v is
j − 1 edges, then v is on level ≤ j − 1.

Induction step: Let v be a vertex where the path from v0 to v is j edges.
Let u be the vertex before v in the path so the path from v0 to u is j − 1
edges.
By the induction hypothesis, u must be on level ≤ j − 1. So, v is only one
edge (u, v) further away from v0 and must be on level ≤ j .

Petrick (SCS, UW) CS341 – Module Graph Algorithms Winter 2025 12 / 35

Proof of Claim 2

Claim 2: v in level i implies every path v0 to v has ≥ i edges.

Proof: We will prove that if there is a path v0 to v of j edges then v is in
level ≤ j by induction on j .

Basis: j = 0: the only node reachable on 0 edges from v0 is v0 itself;
which is on level 0.

Induction hypothesis: For a vertex v where the path from v0 to v is
j − 1 edges, then v is on level ≤ j − 1.

Induction step: Let v be a vertex where the path from v0 to v is j edges.
Let u be the vertex before v in the path so the path from v0 to u is j − 1
edges.
By the induction hypothesis, u must be on level ≤ j − 1. So, v is only one
edge (u, v) further away from v0 and must be on level ≤ j .

Petrick (SCS, UW) CS341 – Module Graph Algorithms Winter 2025 12 / 35

Breadth First Search (BFS)

Consequences
1 BFS from v0 finds the connected component of v0.
2 BFS finds all the shortest paths (number of edges) from v0.

Exercises
Enhance BFS to find all connected components in O(n + m) time.
Use BFS to find if a connected graph has a cycle.
Prove that if (u, v) ∈ E then level(u), level(v) differ by 0 or 1.

Petrick (SCS, UW) CS341 – Module Graph Algorithms Winter 2025 13 / 35

Applications of BFS
Applications

Find the shortest path (number of edges) from a root vertex v0 to
any node v = level of v .
Test if a graph has a cycle.
Test if a graph is bipartite.

G is bipartite if V can be partitioned into V1 ∪V2 (i.e. V1 ∩V2 = ∅) such
that every edge has one end in V1 and one end in V2.

Note: A bipartite graph cannot contain an odd cycle.

Recall from previous exercises:
If (u, v) ∈ E then level(u) and level(v) differ by 0 or 1.
G has a cycle ⇐⇒ we discover an edge (dashed) that is not used in
the BFS tree; i.e. we encounter a vertex that has already been
discovered.

Petrick (SCS, UW) CS341 – Module Graph Algorithms Winter 2025 14 / 35

Testing for Bipartite
Idea: V1 is all vertices on odd levels and V2 is all vertices on even levels.
If no dashed edges, then this is clearly true.

Run BFS. For each edge (u, v) ∈ E check if u, v ∈ V1 or u, v ∈ V2.
This can be done during BFS when we check the neighbours of vertex.

If no such edge is found, then G is bipartite.

If such an edge is found, then G is not bipartite.

Since level(u) and level(v) differ by 0 or 1, if they are in the same
vertex set, the difference must be 0 ⇒ u, v are on the same level.
Let z be the least (closest) common ancestor of u, v . Then a path
from u to z and z to v are the same length, say k and edge (u, v)
creates a cycle of odd length 2k + 1.

Lemma: G is bipartite ⇐⇒ G has no odd cycle.
Note: The algorithm either finds a bipartition OR an odd cycle.

Petrick (SCS, UW) CS341 – Module Graph Algorithms Winter 2025 15 / 35

Testing for Bipartite
Idea: V1 is all vertices on odd levels and V2 is all vertices on even levels.
If no dashed edges, then this is clearly true.

Run BFS. For each edge (u, v) ∈ E check if u, v ∈ V1 or u, v ∈ V2.
This can be done during BFS when we check the neighbours of vertex.

If no such edge is found, then G is bipartite.

If such an edge is found, then G is not bipartite.
Since level(u) and level(v) differ by 0 or 1, if they are in the same
vertex set, the difference must be 0 ⇒ u, v are on the same level.
Let z be the least (closest) common ancestor of u, v . Then a path
from u to z and z to v are the same length, say k and edge (u, v)
creates a cycle of odd length 2k + 1.

Lemma: G is bipartite ⇐⇒ G has no odd cycle.
Note: The algorithm either finds a bipartition OR an odd cycle.

Petrick (SCS, UW) CS341 – Module Graph Algorithms Winter 2025 15 / 35

Depth First Search (DFS)

Depth First Search (DFS)
DFS begins at a specified vertex v0.
A bold search: go as far away as you can; when nothing new to
discover, retrace your steps to find something new.
From v0 discover a new neighbour and go explore it.
From the neighbour, discover a new neighbour (of the neighbour) and
go explore it.
Repeat this until you reach a vertex with no undiscovered neighbours.
Backtrack your path 1 edge and check for a new undiscovered
neighbour then go back 2 bullets; otherwise repeat this step.

Implementation: Marked a vertex as finished when all of its neighbours
have been explored.
Useful to store parent and also if an edge is a tree edge or non-tree edge.

Petrick (SCS, UW) CS341 – Module Graph Algorithms Winter 2025 16 / 35

Depth First Search (DFS)

DFS(v)
1. Mark(v) ← discovered
2. for u ∈ AdjacencyList(v)) do
3. if u is undiscovered then
4. DFS(u)
5. parent(u) ← v
6. (u, v) is a tree edge
7. else (u, v) is a non-tree edge if u ̸= parent(v)
8. Mark(v) ← finished

DFS Main
1. Mark all vertices undiscovered
2. for v ∈ V do // Handles multiple components
3. if v is undiscovered then // Start a new tree rooted at v
4. DFS(v)

Runtime: O(n + m), similar to BFS
Petrick (SCS, UW) CS341 – Module Graph Algorithms Winter 2025 17 / 35

Depth First Search (DFS)

DFS gives us some nice structural properties:
Partitions G into separate trees (connected components).
Gives an edge classification.
Vertex orderings: order of discovery, order of finishing

Lemma: DFS(v0) reaches all vertices connected to v0.

Proof: Suppose there is a path v0, v1, . . . , vi , . . . , vk but we only discover
the vertices upto vi ; i.e. we don’t reach vk .
DFS would explore all neighbours of vi including vi+1 (a contradiction).
We can also repeat this process (math induction) to show we extend the
path to reach vk .

Petrick (SCS, UW) CS341 – Module Graph Algorithms Winter 2025 18 / 35

Depth First Search (DFS)

Lemma: All non-tree edges join an ancestor and a descendant (vertices on
the same branch).

Proof: Suppose a non-tree edge (x , y) ∈ E does not join an ancestor and
a descendant and WLOG, suppose x is discovered first.
Then, in DFS(x), we would discover and explore neighbour y before x
finishes.
Thus, y would appear in the subtree of x :
x would be the ancestor of y and y would be a descendant of x (a
contradicton).

Petrick (SCS, UW) CS341 – Module Graph Algorithms Winter 2025 19 / 35

Enhancing DFS

Exercise: Enhance DFS code to number the connected components and
store the component number for each vertex.

Enhance DFS to compute discovery and finish times

Initialize a clock: time ← 1
DFS(v)
1. Mark(v) ← discovered
2. discover(v) ← time
3. time ← time + 1
4. for u ∈ AdjacencyList(v)) do
5. if u is undiscovered then
6. DFS(u)
7. Mark(v) ← finished
8. finish(v) ← time
9. time ← time + 1

Petrick (SCS, UW) CS341 – Module Graph Algorithms Winter 2025 20 / 35

Cut Vertices

A vertex v is a cut vertex if removing v makes G disconnected.

If the graph represents a network, the breakdown at the cut vertex
disconnects the network.
We can use DFS to find cut vertices.

Characterizing Cut Vertices

Claim: The root is a cut vertex ⇐⇒ it has > 1 child.

Lemma: A non-root v is a cut vertex ⇐⇒ v has a subtree T with no
non-tree edge going to a proper ancestor of v .

Proof:
(⇐) Removing v disconnects T from the rest of G .
(⇒) Since removing v disconnects G , some subtree must get disconnected.

Petrick (SCS, UW) CS341 – Module Graph Algorithms Winter 2025 21 / 35

Cut Vertices

A vertex v is a cut vertex if removing v makes G disconnected.

If the graph represents a network, the breakdown at the cut vertex
disconnects the network.
We can use DFS to find cut vertices.

Characterizing Cut Vertices

Claim: The root is a cut vertex ⇐⇒ it has > 1 child.

Lemma: A non-root v is a cut vertex ⇐⇒ v has a subtree T with no
non-tree edge going to a proper ancestor of v .

Proof:
(⇐) Removing v disconnects T from the rest of G .
(⇒) Since removing v disconnects G , some subtree must get disconnected.

Petrick (SCS, UW) CS341 – Module Graph Algorithms Winter 2025 21 / 35

Algorithm to Identify Cut Vertices

How do we check if a vertex in subtree T of v has a non-tree edge going
to a proper ancestor of v or not? Use the discovery times

Recall previous Lemma: All non-tree edges join an ancestor and a
descendant (vertices on the same branch).
A proper ancestor of v would have a discovery time < discovery(v).
Check vertices in T , if on a non-tree edge, does the other endpoint
have a discovery time < discovery(v).

How do we implement this?

Petrick (SCS, UW) CS341 – Module Graph Algorithms Winter 2025 22 / 35

DFS on Directed Graphs

Classifying Edges
An edge in the DFS tree is a tree edge.
Note: these edge are directed from an ancestor to a descendant.
Forward edge: a non-tree edge (v , u) where u is a descendant of v .
Back edge: a non-tree edge (v , u) where u is an ancestor of v .
Cross edge: a non-tree edge (v , u) where u is not a descendant of v
and v is not a descendant of u.

Petrick (SCS, UW) CS341 – Module Graph Algorithms Winter 2025 23 / 35

DFS on Directed Graphs
DFS(v)
1. mark(v) ← discovered
2. discover(v) ← time
3. time ← time + 1
4. for u ∈ AdjacencyList(v)) do
5. if u is undiscovered then
6. DFS(u)
7. (v , u) is a tree edge
8. else // Not a tree edge
9. if u is not finished then
10. (v , u) is a back edge
11. else if discover(u) > discover(v) then
12. (v , u) is a forward edge
13. else
14. (v , u) is a cross edge
15. mark(v) ← finished
16. finish(v) ← time
17. time ← time + 1

Petrick (SCS, UW) CS341 – Module Graph Algorithms Winter 2025 24 / 35

Applications of DFS

Lemma: A directed graph has a (directed) cycle ⇐⇒ DFS has a back
edge.

Topological sort of a directed acyclic (no directed cycles) graph.
A directed edge (a, b) means a must come before b.
Find a linear order of vertices satisfying all edge constraints.
Note: this is possible ⇐⇒ G has no directed cycle.

⇒ Reverse finish order.

Finding strongly connected components in a directed graph
Strongly connected: for all vertices u, v there is a path from u to v .
Let s be a vertex. G is strongly connected ⇐⇒ for all vertices v ,
there is a path from s to v and a path from v to s.

Petrick (SCS, UW) CS341 – Module Graph Algorithms Winter 2025 25 / 35

Minimum Spanning Tree
Problem
Minimum Spanning Tree (MST)
Instance: Given a connected graph G = (V , E) with weights w : E → R
on the edges.
Find: A subset of the edges of size n − 1 that connects all the vertices
and has minimum weight. The edge subset is called a
minimum spanning tree.

Recall: Any connected graph on n vertices and n − 1 edges is a tree.

There are several greedy approaches to find a MST:
Kruskal’s Algorithm: Always choose cheapest edge available that
doesn’t build a cycle.
Prim’s Algorithm: from a vertex, grow a connected graph by
choosing the least expensive edge that connects to a new vertex.
Remove the most expensive edge that doesn’t disconnect the graph.
Petrick (SCS, UW) CS341 – Module Graph Algorithms Winter 2025 26 / 35

Kruskal’s Algorithm

1. Order edges by weight: e1, . . . , em s.t. w(ei) ≤ w(ei+1)
2. T ← ∅
3. for i ← 1 to m do
4. if ei does not make a cycle with T then
5. T ← T ∪ {ei}

Edge e makes a cycle with T ⇐⇒ e joins vertices in the same connected
component.

Correctness: An exchange proof.

Let T have edges t1, . . . , tn−1.
Prove by induction on i that there is a MST matching T on the first i
edges.

Petrick (SCS, UW) CS341 – Module Graph Algorithms Winter 2025 27 / 35

Kruskal’s Algorithm

Analysis: Recall, graph G = (V , E) where |V | = n and |E | = m.
O(m log m) to sort edges but m ≤ n2, so log m ≤ 2 log n ∈ O(log n)
⇒ O(m log n)

Need to maintain connected components as edges are added. Also test:
if (a, b) has a, b in the same component (don’t add edge), or
if (a, b) have different components (add the edge).

Union-Find Problem: Maintain a collection of disjoint sets with
operations:

Find(v) - determine which set contains element v .
Union(X, Y) - unite two sets X and Y .

For MST, elements are vertices and sets are connect components of T ,
the tree so far. The simple implementation of this ADT gives O(m log n)
for Kruskal.

Petrick (SCS, UW) CS341 – Module Graph Algorithms Winter 2025 28 / 35

Kruskal’s Algorithm

Analysis: Recall, graph G = (V , E) where |V | = n and |E | = m.
O(m log m) to sort edges but m ≤ n2, so log m ≤ 2 log n ∈ O(log n)
⇒ O(m log n)

Need to maintain connected components as edges are added. Also test:
if (a, b) has a, b in the same component (don’t add edge), or
if (a, b) have different components (add the edge).

Union-Find Problem: Maintain a collection of disjoint sets with
operations:

Find(v) - determine which set contains element v .
Union(X, Y) - unite two sets X and Y .

For MST, elements are vertices and sets are connect components of T ,
the tree so far. The simple implementation of this ADT gives O(m log n)
for Kruskal.

Petrick (SCS, UW) CS341 – Module Graph Algorithms Winter 2025 28 / 35

Prim’s Algorithm

Build a single connected component C (that will eventually be the MST
T) by choosing a vertex v /∈ C with a minimum weight edge (u, v) where
u ∈ C .

1. C ← {s}
2. T ← ∅
3. while C ̸= V do
4. Find a vertex v ∈ V − C such that there exists a u ∈ C

with e = (u, v) a minimum weight edge leaving C
5. C ← C ∪ {v}
6. T ← T ∪ {e}

Correctness: An exchange proof (similar to one for Kruskal’s Algorithm).

What data structure should we use to help choose v?
Should it store vertices or edges?

Petrick (SCS, UW) CS341 – Module Graph Algorithms Winter 2025 29 / 35

Prim’s Algorithm - Implementation

Find vertex v ∈ V − C such that e = (u, v), u ∈ C and e is a minimum
weight edge leaving C . Define:

weight(v) =
{
∞ if no edge (u, v) with u ∈ C
min{w(e) : e = (u, v) ∈ E and u ∈ C} otherwise

PriorityQueue (heap):
Maintain a set V − C as an array in heap order, according to weight
ExtractMin(): remove and return vertex with minimal weight
Insert(v , weight(v))
Delete(v) - v may be any vertex in V − C
Want all operations to be O(log k) where k = |V − C |

Careful! Implementation is tricky!

Petrick (SCS, UW) CS341 – Module Graph Algorithms Winter 2025 30 / 35

Prim’s Algorithm - Implementation

Find vertex v ∈ V − C such that e = (u, v), u ∈ C and e is a minimum
weight edge leaving C . Define:

weight(v) =
{
∞ if no edge (u, v) with u ∈ C
min{w(e) : e = (u, v) ∈ E and u ∈ C} otherwise

PriorityQueue (heap):
Maintain a set V − C as an array in heap order, according to weight
ExtractMin(): remove and return vertex with minimal weight
Insert(v , weight(v))
Delete(v) - v may be any vertex in V − C
Want all operations to be O(log k) where k = |V − C |

Careful! Implementation is tricky!

Petrick (SCS, UW) CS341 – Module Graph Algorithms Winter 2025 30 / 35

Prim’s Algorithm - Analysis

Need to ExtractMin each vertex to add it to C
When v is extracted, search v ’s adj list to find the edge e = (v , u)
with weight=weight(v) and u ∈ C → add this edge to MST
Also, for each v ′ ∈ V − C in v ’s adj list, update/reduce weight(v ′)
→ Delete and re-Insert v ′ with updated weight(v ′)

Size of heap: O(n)
n − 1 ExtractMin operations
O(m) update weight, Delete and re-Insert operations

Total: O(m log n), we assume the graph is connected; i.e., m ≥ n − 1

Petrick (SCS, UW) CS341 – Module Graph Algorithms Winter 2025 31 / 35

Prim’s Algorithm - Analysis

Need to ExtractMin each vertex to add it to C
When v is extracted, search v ’s adj list to find the edge e = (v , u)
with weight=weight(v) and u ∈ C → add this edge to MST
Also, for each v ′ ∈ V − C in v ’s adj list, update/reduce weight(v ′)
→ Delete and re-Insert v ′ with updated weight(v ′)

Size of heap: O(n)
n − 1 ExtractMin operations
O(m) update weight, Delete and re-Insert operations

Total: O(m log n), we assume the graph is connected; i.e., m ≥ n − 1

Petrick (SCS, UW) CS341 – Module Graph Algorithms Winter 2025 31 / 35

Prim’s Algorithm - Analysis

Need to ExtractMin each vertex to add it to C
When v is extracted, search v ’s adj list to find the edge e = (v , u)
with weight=weight(v) and u ∈ C → add this edge to MST
Also, for each v ′ ∈ V − C in v ’s adj list, update/reduce weight(v ′)
→ Delete and re-Insert v ′ with updated weight(v ′)

Size of heap: O(n)
n − 1 ExtractMin operations
O(m) update weight, Delete and re-Insert operations

Total: O(m log n), we assume the graph is connected; i.e., m ≥ n − 1

Petrick (SCS, UW) CS341 – Module Graph Algorithms Winter 2025 31 / 35

Shortest Paths in Edge Weighted Graphs

BFS finds the shortest path from some vertex v (root of BFS tree) to
other connect vertices in an unweighted undirected graph.

General Input: Directed or undirected graph with weights on edges.
Note: In directed graphs, typically do not allow negative weight cycles.

There are many different problems related to shortest paths.
Given u, v , find shortest uv path.
Given u, find shortest uv path ∀v - “single source shortest path
problem”.
Find shortest uv path ∀u,∀v - “all pairs shortest path problem”.

Petrick (SCS, UW) CS341 – Module Graph Algorithms Winter 2025 32 / 35

Dijkstra’s Algorithm (1959)
Input: Graph or directed graph G = (V , E), w : E → R≥0 and source
vertex s ∈ V

Output: Shortest path from s to every other vertex v .

Choose edge (x , y), x ∈ B, y /∈ B to minimize d(s, x) + w(x , y) where
d(s, x) is the (known) minimum distance from s to x .
Call this minimum distance d .

1. d(v)←∞ ∀v ̸= s
2. d(s)← 0
3. B ← {s}
4. while |B| < n do
5. y ← vertex of V − B with minimum d value
6. for z ∈ AdjacencyList(y) do
7. if d(y) + w(y , z) < d(z) then
8. d(z)← d(y) + w(y , z)
9. Parent(z)← y

Petrick (SCS, UW) CS341 – Module Graph Algorithms Winter 2025 33 / 35

Edsger W. Dijkstra (1930 - 2002)

Dijkstra was known for many contributions to computer science, e.g.
structured programming, concurrent programming. He designed the
previous algorithm to demonstrate the capabilities of a new computer (to
find railway journeys in the Netherlands). At that time (50s) the result
was not considered important. He wrote:

At the time, algorithms were hardly considered a scientific topic. I wouldn’t have
known where to publish it... The mathematical culture of the day was very much
identified with the continuum and infinity. Could a finite discrete problem be of
any interest? The number of paths from here to there on a finite graph is finite;
each path is a finite length; you must search for the minimum of a finite set. Any
finite set has a minimum - next problem, please. It was not considered
mathematically respectable.

Petrick (SCS, UW) CS341 – Module Graph Algorithms Winter 2025 34 / 35

Single Source Shortest Paths in a DAG
A directed acyclic graph (DAG) has no directed cycle.

Idea: Use topological sort v1v2 . . . vn so every edge (vi , vj) has i < j .

If v comes before s, there is no path s → v so remove all such vertices,
relabel, let s = v1.

1. di ←∞ ∀i
2. d1 ← 0
3. for i from 1 to n do
4. for every edge (vi , vj) do
5. if di + w(vi , vj) < dj then
6. dj ← di + w(vi , vj)

Analysis: O(n + m)

Claim: This finds shortest paths from s.
Exercise: Proof by induction on i .

Petrick (SCS, UW) CS341 – Module Graph Algorithms Winter 2025 35 / 35

	Module Graph Algorithms
	Graph Terminology
	Graph Terminology Continued
	Storing Graphs: Adjacency Matrices
	Storing Graphs: Adjacency Lists
	Operations: Adjacency Matrix vs Adjacency Lists
	Exploring Graphs
	Breadth First Search (BFS)
	Breadth First Search (BFS)
	Breadth First Search (BFS)
	Proof of Claim 1
	Proof of Claim 2
	Breadth First Search (BFS)
	Applications of BFS
	Testing for Bipartite
	Depth First Search (DFS)
	Depth First Search (DFS)
	Depth First Search (DFS)
	Depth First Search (DFS)
	Enhancing DFS
	Cut Vertices
	Algorithm to Identify Cut Vertices
	DFS on Directed Graphs
	DFS on Directed Graphs
	Applications of DFS
	Minimum Spanning Tree
	Kruskal's Algorithm
	Kruskal's Algorithm
	Prim's Algorithm
	Prim's Algorithm - Implementation
	Prim's Algorithm - Analysis
	Shortest Paths in Edge Weighted Graphs
	Dijkstra's Algorithm (1959)
	Edsger W. Dijkstra (1930 - 2002)
	Single Source Shortest Paths in a DAG

