
Module: Dynamic Programming

Thanks to Anna Lubiw and other previous CS 341 instructors.

Dynamic Programming Basics
Text Segmentation
Longest Subsequence
Edit Distance
Weighted Scheduling
Optimal Binary Search Trees
0-1 Knapsack
Memoization

Petrick (SCS, UW) CS341 – Module Dynamic Programming Winter 2025 1 / 43



Dynamic Programming Basics

The main idea of dynamic programming is to solve the subproblems
from smaller to larger (bottom up) and store the results as you go.

Consider the recursive implementation of Fibonacci:

FibR(n)
1. if n = 0 then return 0
2. elseif n = 1 then return 1
3. else return FibR(n − 1) + FibR(n − 2)

Analysis: T (n) = T (n − 1) + T (n − 2) + Θ(1) ∈ O(2n)
O(2n) recursive calls, combining work is O(1).

Petrick (SCS, UW) CS341 – Module Dynamic Programming Winter 2025 2 / 43



Dynamic Programming Basics

The main idea of dynamic programming is to solve the subproblems
from smaller to larger (bottom up) and store the results as you go.

Consider the recursive implementation of Fibonacci:

FibR(n)
1. if n = 0 then return 0
2. elseif n = 1 then return 1
3. else return FibR(n − 1) + FibR(n − 2)

Analysis: T (n) = T (n − 1) + T (n − 2) + Θ(1) ∈ O(2n)
O(2n) recursive calls, combining work is O(1).

Petrick (SCS, UW) CS341 – Module Dynamic Programming Winter 2025 2 / 43



Dynamic Programming Basics

A better approach is to use an iterative method and work up from the
base cases.

FibI(n)
1. f [0]← 0
2. f [1]← 1
3. for i ← 2 to n do
4. f [i ]← f [i − 1] + f [i − 2]
5. return f [n]

Analysis: O(n) arithemtic operations.
Build solutions to O(n) smaller problems (bottom up), each in O(1) time.

Petrick (SCS, UW) CS341 – Module Dynamic Programming Winter 2025 3 / 43



Text Segmentation

Problem
Text Segmentation
Instance: A string of letters A[1..n] where A[i ] ∈ {A, . . . , Z}.
Question: Can A be split into (2 or more) words?

Assume you are given a tester that runs in O(1) time:

Word(i , j) =
{

True if A[i , j] is a valid word
False otherwise

Is there a simple solution?
Find the first (shortest) word that is a prefix ...?
Find the longest word that is a prefix ...?

Or do you have to check all prefixes between?

Petrick (SCS, UW) CS341 – Module Dynamic Programming Winter 2025 4 / 43



Text Segmentation

We can build up a solution for A[n] from smaller subproblems?
Suppose we know Split(k) for k = 0, 1, . . . , n − 1 where:

Split(k) =
{

True if A[1..k] is splittable
False otherwise

How do we find Split(n)?

Try Split(j) and Word(j + 1, n) for all j = 0, . . . n − 1.

Correctness: Split(n) (is true) ⇐⇒ at least one j gives True.
⇐ Some j exists such that Split(j) and Word(j + 1, n) is True.
So, we have a way to split A[1..n].

⇒ If A[1..n] is splittable, take A[j + 1..n] as last word.

Petrick (SCS, UW) CS341 – Module Dynamic Programming Winter 2025 5 / 43



Text Segmentation

We can build up a solution for A[n] from smaller subproblems?
Suppose we know Split(k) for k = 0, 1, . . . , n − 1 where:

Split(k) =
{

True if A[1..k] is splittable
False otherwise

How do we find Split(n)?
Try Split(j) and Word(j + 1, n) for all j = 0, . . . n − 1.

Correctness: Split(n) (is true) ⇐⇒ at least one j gives True.
⇐ Some j exists such that Split(j) and Word(j + 1, n) is True.
So, we have a way to split A[1..n].

⇒ If A[1..n] is splittable, take A[j + 1..n] as last word.

Petrick (SCS, UW) CS341 – Module Dynamic Programming Winter 2025 5 / 43



Text Segmentation

We can then create an algorithm to solve the smaller subproblems and
store the results:

1. Split[0] ← True
2. for k ← 1 to n do
3. Split[k]← False
4. for j ← 0 to k − 1 do
5. if Split[j] and Word(j + 1, k) then
6. Split[k]← True

Runtime: O(n2)
Exercise: Show how to compute the actual split.

Petrick (SCS, UW) CS341 – Module Dynamic Programming Winter 2025 6 / 43



Longest Increasing Subsequence

Problem
Longest Increasing Subsequence
Instance: A sequence of numbers A[1..n] where A[i ] ∈ N.
Find: The longest increasing subsequence (length and/or sequence).

Example: A : 5 2 1 4 3 1 6 9 2
An increasing subsequence of length 4 is: 5 2 1 4 3 1 6 9 2

Try similar approach to the previous problem.

Let LIS[k] = length of longest increasing subsequence of A[1..k].

Not enough information to find LIS[n] - length alone is not enough, need
to know last number of subsequence to see if it can be extended by adding
A[n] or not.

Petrick (SCS, UW) CS341 – Module Dynamic Programming Winter 2025 7 / 43



Longest Increasing Subsequence

Problem
Longest Increasing Subsequence
Instance: A sequence of numbers A[1..n] where A[i ] ∈ N.
Find: The longest increasing subsequence (length and/or sequence).

Example: A : 5 2 1 4 3 1 6 9 2
An increasing subsequence of length 4 is: 5 2 1 4 3 1 6 9 2

Try similar approach to the previous problem.

Let LIS[k] = length of longest increasing subsequence of A[1..k].

Not enough information to find LIS[n] - length alone is not enough, need
to know last number of subsequence to see if it can be extended by adding
A[n] or not.

Petrick (SCS, UW) CS341 – Module Dynamic Programming Winter 2025 7 / 43



Longest Increasing Subsequence

Define LISe[k] = length of the longest increasing subsequence of A[1..k]
that ends with A[k].

To compute LISe[k], consider all the previous longest sequences that can
be extended by A[k].

1. LISe[1] ← 1
2. for k ← 2 to n do
3. LISe[k]← 1
4. for j ← 1 to k − 1 do
5. if A[k] > A[j] then
6. LISe[k]← max{LISe[k], LISe[j] + 1}

Runtime: O(n2)
Exercise: Argue correctness

Petrick (SCS, UW) CS341 – Module Dynamic Programming Winter 2025 8 / 43



Longest Increasing Subsequence

Define LISe[k] = length of the longest increasing subsequence of A[1..k]
that ends with A[k].

To compute LISe[k], consider all the previous longest sequences that can
be extended by A[k].

1. LISe[1] ← 1
2. for k ← 2 to n do
3. LISe[k]← 1
4. for j ← 1 to k − 1 do
5. if A[k] > A[j] then
6. LISe[k]← max{LISe[k], LISe[j] + 1}

Runtime: O(n2)
Exercise: Argue correctness

Petrick (SCS, UW) CS341 – Module Dynamic Programming Winter 2025 8 / 43



Longest Increasing Subsequence

Given LISe[1..n], how do you find the maximum length?

Find maximum entry in LISe, OR
Add dummy entry A[n + 1] = +∞, then return LISe[n + 1]− 1

How do we recover the actual sequence itself?
Need to also store which sequence j we extended by adding A[k].
Can then backtrack to recover the terms.

Runtime (simple approach): O(n2) but O(n log n) is possible.

Petrick (SCS, UW) CS341 – Module Dynamic Programming Winter 2025 9 / 43



Longest Increasing Subsequence

Given LISe[1..n], how do you find the maximum length?
Find maximum entry in LISe, OR
Add dummy entry A[n + 1] = +∞, then return LISe[n + 1]− 1

How do we recover the actual sequence itself?
Need to also store which sequence j we extended by adding A[k].
Can then backtrack to recover the terms.

Runtime (simple approach): O(n2) but O(n log n) is possible.

Petrick (SCS, UW) CS341 – Module Dynamic Programming Winter 2025 9 / 43



Longest Common Subsequence

Problem
Longest Common Subsequence
Instance: Two strings x = x1 . . . xn and y = y1 . . . ym.
Find: The longest common subsequence (common to x and y).

Let M(i , j) = length of longest common subsequence of x1 . . . xi−1xi and
y1 . . . yj−1yj .

How do we solve a subproblem using “smaller” subproblems?
What are the possibilities?

Match xi with yj , xi = yj

Skip xi

Skip yj

Petrick (SCS, UW) CS341 – Module Dynamic Programming Winter 2025 10 / 43



Longest Common Subsequence

Base cases: M(i , 0) = 0 and M(0, j) = 0

Recall
Match xi with yj , xi = yj

Skip xi

Skip yj

M(i , j) = max


1 + M(i − 1, j − 1) if xi = yj

M(i − 1, j)
M(i , j − 1)

Solve subproblems in any order with M(i − 1, j − 1), M(i − 1, j),
M(i , j − 1) before M(i , j).

Petrick (SCS, UW) CS341 – Module Dynamic Programming Winter 2025 11 / 43



Longest Common Subsequence

Pseudocode for solving the subproblems
Identifying the Optimal solution
Recovering the actual subsequence - sometimes you may need to
explicitly store the decision made while solving the subproblems.

For example, store which subproblem was the max value used to
compute M(i , j).

Petrick (SCS, UW) CS341 – Module Dynamic Programming Winter 2025 12 / 43



Maximum Common Subsequence and Longest Increasing
Subsequence

Maximum common subsequence solves longest increasing subsequence.

Claim: Longest increasing subsequence of A = maximum common
subsequence of A and SA where SA is sort(A).

A : 5 2 9 6 3 7 4

SA : 2 3 4 5 6 7 9

Petrick (SCS, UW) CS341 – Module Dynamic Programming Winter 2025 13 / 43



Designing Strategy for Optimization Problems

Optimal Structure Examine the structure of an optimal solution to a
problem instance I, and determine if an optimal solution for I can be
expressed in terms of optimal solutions to certain subproblems of I.

Define Subproblems Define a set of subproblems S(I) of the instance I,
the solution of which enables the optimal solution of I to be computed. I
will be the last or largest instance in the set S(I).

Petrick (SCS, UW) CS341 – Module Dynamic Programming Winter 2025 14 / 43



Designing Strategy for Optimization Problems

Recurrence Relation Derive a recurrence relation on the optimal
solutions to the instances in S(I). This recurrence relation should be
completely specified in terms of optimal solutions to (smaller) instances in
S(I) and/or base cases.

Compute Optimal Solutions Compute the optimal solutions to all the
instances in S(I). Compute these solutions using the recurrence relation in
a bottom-up fashion, filling in a table of values containing these optimal
solutions. Whenever a particular table entry is filled in using the
recurrence relation, the optimal solutions of relevant subproblems can be
looked up in the table (they have been computed already). The final table
entry is the solution to I.

Petrick (SCS, UW) CS341 – Module Dynamic Programming Winter 2025 15 / 43



Edit Distance

Maximum Common Subsequence found a sequence of characters common
to each given string but allowed characters to be skipped over.

Another idea is to count the number of changes it would take to modify
one string into the other.

A change is one of:
add a letter (gap)
delete a letter (gap)
replace a letter (mismatch found)

This is called Edit Distance.
Used in

natural language processing, bioinformatics for comparing DNA
sequences, etc; i.e. strings over Σ = {A, C , T , G}.

Petrick (SCS, UW) CS341 – Module Dynamic Programming Winter 2025 16 / 43



Edit Distance

Maximum Common Subsequence found a sequence of characters common
to each given string but allowed characters to be skipped over.

Another idea is to count the number of changes it would take to modify
one string into the other.

A change is one of:
add a letter (gap)
delete a letter (gap)
replace a letter (mismatch found)

This is called Edit Distance.
Used in natural language processing, bioinformatics for comparing DNA
sequences, etc; i.e. strings over Σ = {A, C , T , G}.

Petrick (SCS, UW) CS341 – Module Dynamic Programming Winter 2025 16 / 43



Edit Distance

Problem
Edit Distance
Instance: Two strings x = x1 . . . xm and y = y1 . . . yn .
Find: The edit distance between x and y; i.e. find the alignment that
gives the minimum number of changes.

Subproblem: M(i , j) = minimum number of changes to match
x1 . . . xi−1xi and y1 . . . yj−1yj .

Possible changes:
match xi to yi at a replacement cost if characters are different
(x1 ̸= yj)
match xi to gap/blank character (delete xi)
match yj to gap/blank character (add yj)

Note: each change may have a different cost.
Petrick (SCS, UW) CS341 – Module Dynamic Programming Winter 2025 17 / 43



Edit Distance

Recurrence relation:

M(i , j) = min


M(i − 1, j − 1) if if xi = yj

r + M(i − 1, j − 1) if xi ̸= yj

d + M(i − 1, j) match xi to blank
a + M(i , j − 1) match yj to blank

where r is the replacement cost, d delete cost and a add cost.
Count the number of changes: r = d = a = 1

May be much more sophisticated: replacement cost, r(xi , yj), may depend
on the letters. For example,
r(a, s) = 1 because keys are close on keyboard
r(a, c) = 2 because a bit farther away
r(a, e) = 1 because both are vowels, etc.

Petrick (SCS, UW) CS341 – Module Dynamic Programming Winter 2025 18 / 43



Edit Distance

Order to solve subproblems
Pseudocode to solve subproblems
Optimal solutions
Recovering the actual changes made
Runtime and space

Petrick (SCS, UW) CS341 – Module Dynamic Programming Winter 2025 19 / 43



Weighted Interval Scheduling

Problem
Interval Scheduling
Instance: A set of intervals I.
Find: A maximum size subset of disjoint intervals.

Problem
Weighted Interval Scheduling
Instance: A set of intervals I and weights w(i) for each i ∈ I.
Find: A set S ⊆ I such that no two intervals overlap and

∑
i∈S

w(i) is

maximized.

Intervals: start time, finish time, length, etc
“Weight” could represent many things: profit, preference, etc

Petrick (SCS, UW) CS341 – Module Dynamic Programming Winter 2025 20 / 43



Maximum Weight Independent Set
A more general version of this problem can be defined as:

Problem
Maximum Weight Independent Set
Instance: A set of elements I, weights w(i) for each i ∈ I and a set C of
conflicts where (i , j) ∈ C if elements i and j conflict.
Find: A maximum weight subset S ⊆ I with no conflicting pairs of items.

Can be modeled as a graph where each element is a vertex and an edge
represents a conflict between adjacent elements.

Find: a maximum weight independent set (NP-complete).

General approach: consider element i , either choose it or not.
OPT (I) = max{OPT (I − {i}), w(i) + OPT (I ′)} where I ′ = {j |(i , j) /∈ C}
T (n) = 2T (n − 1) + O(1)⇒ T (n) ∈ O(2n)
May end up solving subproblems for each of the 2n subsets of I.

Petrick (SCS, UW) CS341 – Module Dynamic Programming Winter 2025 21 / 43



Back to Weighted Interval Scheduling

Subproblems: Let M(i) = max weight subset of intervals 1..i .

We can either choose interval i or not.

M(i) = max
{

M(i − 1) if we don’t choose i
w(i) + M(X ) if we choose i

Want X to be the intervals that disjoint from i but also to be labelled less
than i (so they are “smaller” subproblems).
Can we somehow order the intervals? Yes, call this set p(i).

M(i) = max
{

M(i − 1) if we don’t choose i
w(i) + M(p(i)) if we choose i

Petrick (SCS, UW) CS341 – Module Dynamic Programming Winter 2025 22 / 43



Back to Weighted Interval Scheduling

Subproblems: Let M(i) = max weight subset of intervals 1..i .

We can either choose interval i or not.

M(i) = max
{

M(i − 1) if we don’t choose i
w(i) + M(X ) if we choose i

Want X to be the intervals that disjoint from i but also to be labelled less
than i (so they are “smaller” subproblems).
Can we somehow order the intervals?

Yes, call this set p(i).

M(i) = max
{

M(i − 1) if we don’t choose i
w(i) + M(p(i)) if we choose i

Petrick (SCS, UW) CS341 – Module Dynamic Programming Winter 2025 22 / 43



Back to Weighted Interval Scheduling

Subproblems: Let M(i) = max weight subset of intervals 1..i .

We can either choose interval i or not.

M(i) = max
{

M(i − 1) if we don’t choose i
w(i) + M(X ) if we choose i

Want X to be the intervals that disjoint from i but also to be labelled less
than i (so they are “smaller” subproblems).
Can we somehow order the intervals? Yes, call this set p(i).

M(i) = max
{

M(i − 1) if we don’t choose i
w(i) + M(p(i)) if we choose i

Petrick (SCS, UW) CS341 – Module Dynamic Programming Winter 2025 22 / 43



Weighted Interval Scheduling
The algorithm to compute the actual set and weight is:

1. Sort intervals 1..n by right endpoint and relabel
2. M(0)← 0
3. S(0)← ∅ // stores set of chosen intervals
4. for i ← 1 to n do
5. p(i)← i − 1 // compute p(i)
6. while p(i) ̸= 0 and intervals i and p(i) overlap do
7. p(i)← p(i)− 1

8. if M(i − 1) ≥ w(i) + M(p(i)) then
9. M(i)← M(i − 1)
10. S(i)← S(i − 1)
11. else
12. M(i)← w(i) + M(p(i))
13. S(i)← {i} ∪ S(p(i))

Optimal solution: weight M(n), interval set S(n)
Petrick (SCS, UW) CS341 – Module Dynamic Programming Winter 2025 23 / 43



Weighted Interval Scheduling

Runtime:
O(n log n) to sort n subproblems, each O(n)⇒ O(n2)

Space: O(n2) to store n sets of size O(n)

Improvements
Compute all p(i) values first to save time.
Compute S by backtracking to save space.

Petrick (SCS, UW) CS341 – Module Dynamic Programming Winter 2025 24 / 43



Constructing Optimal Binary Search Trees

Problem
Constructing an Optimal Binary Search Tree
Instance: A set of items I = {1, . . . , n} and probabilities p1, . . . , pn
where pi is the probability that item i will be searched.
Find: A BST that minimizes the search cost

∑
i∈I

(pi) · ProbeDepth(i).

ProbeDepth(i) = 1 + Depth(i)

The root node has Depth = 0 but ProbeDepth = 1; i.e. it takes 1 probe to
reach it (similar to hashing).

Petrick (SCS, UW) CS341 – Module Dynamic Programming Winter 2025 25 / 43



Constructing Optimal Binary Search Trees

For example: p1 = p2 = p3 = p4 = p5 = 1
5

4

2

1 3

5

Search Cost = 1 · 1 · 1
5 + 2 · 2 · 1

5 + 2 · 3 · 1
5 = 7

5

Is the tree unique?

Petrick (SCS, UW) CS341 – Module Dynamic Programming Winter 2025 26 / 43



Constructing Optimal Binary Search Trees

For example: p1 = 0.6, p2 = p3 = p4 = p5 = 0.1

4

2

1 3

5

Search Cost = 1 · 1 · (0.1) + 2 · 2 · (0.1) + 1 · 3 · (0.6) + 1 · 3 · (0.1) = 2.6

Does this tree minimize the search cost?

Petrick (SCS, UW) CS341 – Module Dynamic Programming Winter 2025 27 / 43



Constructing Optimal Binary Search Trees
For example: p1 = 0.6, p2 = p3 = p4 = p5 = 0.1
Should place the item with the highest probability at the top.

1

3

2 4

5

Search Cost = 1 · 1 · (0.6) + 1 · 2 · (0.1) + 2 · 3 · (0.1) + 1 · 4 · (0.1) = 1.8

Does this tree minimize the search cost?
Petrick (SCS, UW) CS341 – Module Dynamic Programming Winter 2025 28 / 43



Constructing Optimal Binary Search Trees
Dynamic Programming approach: Try all choices for root node, ...

Suppose root will be some item k.
Left subtree is then the optimal BST on 1, . . . , k − 1.
Right subtree is then the optimal BST on k + 1, . . . , n.

Subproblems: Let M[i , j] be the optimal BST on items i , . . . , j .

M[i , j] = min
k=i ..j

{
M[i , k − 1] + M[K + 1, j]

}
+

j∑
t=i

pt

One of the nodes k ∈ i , . . . , j will be the root so contributes 1 · 1 · pk .
M[i , k − 1] gives the search cost for this tree but doesn’t consider it is
the left subtree of k so we need to add

∑k−1
t=i pt .

Similarly, for the right subtree, we need to add
∑j

t=k+1 pt .

Petrick (SCS, UW) CS341 – Module Dynamic Programming Winter 2025 29 / 43



Constructing Optimal Binary Search Trees
Dynamic Programming approach: Try all choices for root node, ...

Suppose root will be some item k.
Left subtree is then the optimal BST on 1, . . . , k − 1.
Right subtree is then the optimal BST on k + 1, . . . , n.

Subproblems: Let M[i , j] be the optimal BST on items i , . . . , j .

M[i , j] = min
k=i ..j

{
M[i , k − 1] + M[K + 1, j]

}
+

j∑
t=i

pt

One of the nodes k ∈ i , . . . , j will be the root so contributes 1 · 1 · pk .
M[i , k − 1] gives the search cost for this tree but doesn’t consider it is
the left subtree of k so we need to add

∑k−1
t=i pt .

Similarly, for the right subtree, we need to add
∑j

t=k+1 pt .

Petrick (SCS, UW) CS341 – Module Dynamic Programming Winter 2025 29 / 43



Constructing Optimal Binary Search Trees

Let P[i ] =
i∑

t=1
pt where P[0] = 0, so,

j∑
t=i

pt = P[j]− P[i − 1].

1. for i ← 1 to n do
2. M[i , i ]← pi // Single node tree
3. M[i , i − 1]← 0 // empty tree
4. for d ← 1 to n − 1 do // d = j − i from above
5. for i ← 1 to n − 1 do // Find M[i , i + d ]
6. best ←∞
7. for k ← i to i + d do
8. temp ← M[i , k − 1] + M[k + 1, i + d ]
9. if temp < best then best ← temp
10. M[i , i + d ]← best + P[i + d ]− P[i − 1]

Runtime: O(n2 · n) = O(n3)

Petrick (SCS, UW) CS341 – Module Dynamic Programming Winter 2025 30 / 43



0-1 Knapsack
Problem
0-1 Knapsack
Instance: A set of items {1, . . . , n} where item i has weight wi and
value vi and a knapsack with capacity W .
Find: A subset of items S such

∑
i∈S

wi ≤W so that
∑
i∈S

vi is maximized.

Note: “0-1”- you must take the whole item or none of it; items are not
divisible (Fractional Knapsack is a different problem).

Dynamic Programming Approach:

Consider items 1, . . . , i , is item i in or out? .
If i /∈ S ⇒ Optimal solution on 1, . . . , i − 1
If i ∈ S ⇒ If we take i , what subproblem do we want?

▶ Maximize
∑

values considering items 1, . . . , i − 1
▶ Reduced weight (capacity left after taking i):

∑
weight ≤W − wi

Petrick (SCS, UW) CS341 – Module Dynamic Programming Winter 2025 31 / 43



0-1 Knapsack
Problem
0-1 Knapsack
Instance: A set of items {1, . . . , n} where item i has weight wi and
value vi and a knapsack with capacity W .
Find: A subset of items S such

∑
i∈S

wi ≤W so that
∑
i∈S

vi is maximized.

Note: “0-1”- you must take the whole item or none of it; items are not
divisible (Fractional Knapsack is a different problem).

Dynamic Programming Approach:
Consider items 1, . . . , i , is item i in or out? .

If i /∈ S ⇒ Optimal solution on 1, . . . , i − 1
If i ∈ S ⇒ If we take i , what subproblem do we want?

▶ Maximize
∑

values considering items 1, . . . , i − 1
▶ Reduced weight (capacity left after taking i):

∑
weight ≤W − wi

Petrick (SCS, UW) CS341 – Module Dynamic Programming Winter 2025 31 / 43



0-1 Knapsack
Problem
0-1 Knapsack
Instance: A set of items {1, . . . , n} where item i has weight wi and
value vi and a knapsack with capacity W .
Find: A subset of items S such

∑
i∈S

wi ≤W so that
∑
i∈S

vi is maximized.

Note: “0-1”- you must take the whole item or none of it; items are not
divisible (Fractional Knapsack is a different problem).

Dynamic Programming Approach:
Consider items 1, . . . , i , is item i in or out? .

If i /∈ S ⇒ Optimal solution on 1, . . . , i − 1
If i ∈ S ⇒ If we take i , what subproblem do we want?

▶ Maximize
∑

values considering items 1, . . . , i − 1
▶ Reduced weight (capacity left after taking i):

∑
weight ≤W − wi

Petrick (SCS, UW) CS341 – Module Dynamic Programming Winter 2025 31 / 43



0-1 Knapsack

Define subproblems (i , w) where i = 0..n and w = 0..W
Give pseudocode to solve subproblems in appropriate order.
Identify optimal solution - maximized value.
Recover actual items chosen.
Analysis: Pseudo-polynomial runtime.

Petrick (SCS, UW) CS341 – Module Dynamic Programming Winter 2025 32 / 43



Memoization

Memoization (optimization technique): store the result of expensive
function calls and return the stored result instead of recomputing.

Use recursion, rather than explicitly solving all subproblems
bottom-up (as we have done so far).
Danger! Don’t want to solve the same subproblem over and over
(possibly taking exponential time; e.g. T (n) = 2T (n − 1) + O(1) is
exponential).

Fix: when you solve a subproblem, store the solutions. Before
(re)solving a problem, check if you have already stored the solution.
Solutions can be stored in a matrix or in a hash table.
Some programming languages will help you implement memoization:

▶ memoized-call(factorial(n)) in Python
▶ option remember in Maple, etc.

Petrick (SCS, UW) CS341 – Module Dynamic Programming Winter 2025 33 / 43



Memoization

Memoization (optimization technique): store the result of expensive
function calls and return the stored result instead of recomputing.

Use recursion, rather than explicitly solving all subproblems
bottom-up (as we have done so far).
Danger! Don’t want to solve the same subproblem over and over
(possibly taking exponential time; e.g. T (n) = 2T (n − 1) + O(1) is
exponential).
Fix: when you solve a subproblem, store the solutions. Before
(re)solving a problem, check if you have already stored the solution.
Solutions can be stored in a matrix or in a hash table.
Some programming languages will help you implement memoization:

▶ memoized-call(factorial(n)) in Python
▶ option remember in Maple, etc.

Petrick (SCS, UW) CS341 – Module Dynamic Programming Winter 2025 33 / 43



Memoization

Advantage
Maybe don’t have to solve all the subproblems.

Disadvantages
Harder to analyze runtime.
Recursion adds extra overhead - runtime stack, etc.

Petrick (SCS, UW) CS341 – Module Dynamic Programming Winter 2025 34 / 43



Single Source Shortest Paths in a DAG
A directed acyclic graph (DAG) has no directed cycle.

Idea: Use topological sort v1v2 . . . vn so every edge (vi , vj) has i < j .

If v comes before s, there is no path s → v so remove all such vertices,
relabel, let s = v1.

1. di ←∞ ∀i
2. d1 ← 0
3. for i from 1 to n do
4. for every edge (vi , vj) do
5. if di + w(vi , vj) < dj then
6. dj ← di + w(vi , vj)

Analysis: O(n + m)

Claim: This finds shortest paths from s.
Exercise: Proof by induction on i .

Petrick (SCS, UW) CS341 – Module Dynamic Programming Winter 2025 35 / 43



Dynamic Programming for Shortest Paths in a Graph

Single Source Shortest Paths: Bellman-Ford
The original application of dynamic programming.
Edge weights may be negative but no negative weight cycles.

All Pairs Shortest Paths: Floyd-Warshall

How do we define a subproblem?

Consider a uv path that goes through a vertex x .

⇒ Consists of the shortest ux path + shortest xv path.

In what sense do we consider these “smaller”?
Fewer edges: try paths of ≤ 1 edge, ≤ 2edges, etc.
We will use this for the single source shortest paths algorithm.
They don’t use x .
We will use this for all pairs shortest paths algorithm.

Petrick (SCS, UW) CS341 – Module Dynamic Programming Winter 2025 36 / 43



Dynamic Programming for Shortest Paths in a Graph

Single Source Shortest Paths: Bellman-Ford
The original application of dynamic programming.
Edge weights may be negative but no negative weight cycles.

All Pairs Shortest Paths: Floyd-Warshall

How do we define a subproblem?

Consider a uv path that goes through a vertex x .
⇒ Consists of the shortest ux path + shortest xv path.

In what sense do we consider these “smaller”?
Fewer edges: try paths of ≤ 1 edge, ≤ 2edges, etc.
We will use this for the single source shortest paths algorithm.
They don’t use x .
We will use this for all pairs shortest paths algorithm.

Petrick (SCS, UW) CS341 – Module Dynamic Programming Winter 2025 36 / 43



Single Source Shortest Paths
Let di(v) be the weight of the shortest path from s to v using ≤ i edges.
Then,

d1(v) =


0 if v = s
w(s, v) if (s, v) ∈ E
∞ otherwise

and we want to find dn−1(v).
Why n − 1 edges?

A path with ≥ n edges would repeat a vertex giving a cycle.
Every cycle has weight ≥ 0, removing the cycle is no worse.

Compute di from di−1:

di(v) = min


di−1(v) use ≤ i − 1 edges
minu{di−1(u) + w(u, v)} use i edges
∞ otherwise

Correctness: We consider all possibilities for di . Use induction on i .

Petrick (SCS, UW) CS341 – Module Dynamic Programming Winter 2025 37 / 43



Single Source Shortest Paths
Let di(v) be the weight of the shortest path from s to v using ≤ i edges.
Then,

d1(v) =


0 if v = s
w(s, v) if (s, v) ∈ E
∞ otherwise

and we want to find dn−1(v).
Why n − 1 edges?

A path with ≥ n edges would repeat a vertex giving a cycle.
Every cycle has weight ≥ 0, removing the cycle is no worse.

Compute di from di−1:

di(v) = min


di−1(v) use ≤ i − 1 edges
minu{di−1(u) + w(u, v)} use i edges
∞ otherwise

Correctness: We consider all possibilities for di . Use induction on i .

Petrick (SCS, UW) CS341 – Module Dynamic Programming Winter 2025 37 / 43



Single Source Shortest Paths
Let di(v) be the weight of the shortest path from s to v using ≤ i edges.
Then,

d1(v) =


0 if v = s
w(s, v) if (s, v) ∈ E
∞ otherwise

and we want to find dn−1(v).
Why n − 1 edges?

A path with ≥ n edges would repeat a vertex giving a cycle.
Every cycle has weight ≥ 0, removing the cycle is no worse.

Compute di from di−1:

di(v) = min


di−1(v) use ≤ i − 1 edges
minu{di−1(u) + w(u, v)} use i edges
∞ otherwise

Correctness: We consider all possibilities for di . Use induction on i .
Petrick (SCS, UW) CS341 – Module Dynamic Programming Winter 2025 37 / 43



Bellman-Ford Algorithm

1. Initialize d1(v) for all v (previous slide)
2. for i from 2 to n − 1 do
3. for v ∈ V do
4. di(v)← di−1(v)
5. for each edge (u, v) do // Want edges directed into v
6. di(v)← min{di(v), di−1(u) + w(u, v)}

Analysis: O(n · (n + m))

Save space, re-use same d(v), and simplify code:

1. d(v)←∞ for all v
2. d(s)← 0
3. for i from 1 to n − 1 do
4. for (u, v) ∈ E do
5. d(v)← min{d(v), d(u) + w(u, v)}

Petrick (SCS, UW) CS341 – Module Dynamic Programming Winter 2025 38 / 43



Bellman-Ford Algorithm
Exercise: Note that in the simplified code, i does not appear inside the
loop. Explain why the simplified code works; i.e. does the same as the
original.

Exercise: If the inner for loop completes and no d(v) value has changed
during its execution, justify that the outer loop may exit early.

Exercise: Enhance the code to find the actual shortest paths by adding
parent pointers and updates (when d is updated).
Note: paths are recovered would then be in reverse order.

Exercise: If we run 1 more iteration and see if any d value changes, we
can detect negative weight cycles reachable from s.
Explain why this works.

Exercise: Show how to detect a negative weight cycle anywhere in the
graph.
Solution: add new s ′ and add edges (s ′, v)∀v , with weight 0.

Petrick (SCS, UW) CS341 – Module Dynamic Programming Winter 2025 39 / 43



All Pairs Shortest Paths

Problem
All Pairs Shortest Paths
Instance: A directed graph G = (V , E ) with edge weights w : E → R
(but no negative weight cycle).
Find: The shortest path from u to v for all u, v.
Output the distances as an n × n matrix D[u, v ].

Idea: Use dynamic programming where intermediate paths use only a
subset of the vertices.

Let V = {1, 2, . . . , n}.
Let Di [u, v ] be the length of the shortest uv path using intermediate
vertices in {1, 2, . . . , i}.

Subproblems: Solve Di [u, v ] for all u, v as i goes from 0 to n.
Our final solution is then Dn[u, v ].

Petrick (SCS, UW) CS341 – Module Dynamic Programming Winter 2025 40 / 43



Recurrence Relation for All Pairs Shortest Paths

Recall: Di [u, v ] is the length of the shortest uv path using intermediate
vertices in {1, 2, . . . , i}.

Base cases:

D0[u, v ] =


0 if u = v
w(u, v) use (u, v) ∈ E
∞ otherwise

The main recursive property, i > 0, is then to use i or not:

Di [u, v ] = min
{

Di−1[u, i ] + Di−1[i , v ] use vertex i
Di−1[u, v ] don’t use i

Correctness: We consider all possibilities for Di . Use induction on i .

Petrick (SCS, UW) CS341 – Module Dynamic Programming Winter 2025 41 / 43



Floyd-Warshall Algorithm

1. Initialize D0[u, v ] (Base cases on previous slide)
2. for i from 1 to n do
3. for u from 1 to n do
4. for v from 1 to n do
5. Di [u, v ]← min{Di [u, v ], Di−1[u, i ] + Di−1[i , v ]}

Analysis: O(n3) time and O(n3) space

Exercise: Give the intialization for D and explain why the following
algorithm that reduces the space requirement to O(n2) is also correct:

1. for i from 1 to n do
2. for u from 1 to n do
3. for v from 1 to n do
4. D[u, v ]← min{D[u, v ], D[u, i ] + D[i , v ]}

Petrick (SCS, UW) CS341 – Module Dynamic Programming Winter 2025 42 / 43



Recovering the Actual Path

Create a new array Next[u, v ] where each location stores the first vertex
after u on a shortest path from u to v .

Suppose: a shortest uv path follows: u, x , y , z , v .
Then, Next[u, v ] returns x , Next[x , v ] returns y , Next[y , v ] returns z .

Implementation:
When we update D[u, v ]← min{D[u, v ], D[u, i ] + D[i , v ]},
also update Next[u, v ] (Exercise).

History: Bellman explains the reasoning behind the term dynamic
programming in his autobiography, Eye of the Hurricane: An
Autobiography:
https://en.wikipedia.org/wiki/Dynamic_programming#History

Petrick (SCS, UW) CS341 – Module Dynamic Programming Winter 2025 43 / 43

https://en.wikipedia.org/wiki/Dynamic_programming#History

	Module: Dynamic Programming
	Dynamic Programming Basics
	Dynamic Programming Basics
	Text Segmentation
	Text Segmentation
	Text Segmentation
	Longest Increasing Subsequence
	Longest Increasing Subsequence
	Longest Increasing Subsequence
	Longest Common Subsequence
	Longest Common Subsequence
	Longest Common Subsequence
	Maximum Common Subsequence and Longest Increasing Subsequence
	Designing Strategy for Optimization Problems
	Designing Strategy for Optimization Problems
	Edit Distance
	Edit Distance
	Edit Distance
	Edit Distance
	Weighted Interval Scheduling
	Maximum Weight Independent Set
	Back to Weighted Interval Scheduling
	Weighted Interval Scheduling
	Weighted Interval Scheduling
	Constructing Optimal Binary Search Trees
	Constructing Optimal Binary Search Trees
	Constructing Optimal Binary Search Trees
	Constructing Optimal Binary Search Trees
	Constructing Optimal Binary Search Trees
	Constructing Optimal Binary Search Trees
	0-1 Knapsack
	0-1 Knapsack
	Memoization
	Memoization
	Single Source Shortest Paths in a DAG
	Dynamic Programming for Shortest Paths in a Graph
	Single Source Shortest Paths
	Bellman-Ford Algorithm
	Bellman-Ford Algorithm
	All Pairs Shortest Paths
	Recurrence Relation for All Pairs Shortest Paths
	Floyd-Warshall Algorithm
	Recovering the Actual Path

