
Lec 1 Case Study: Convex Hull

Thanks to Anna Lubiw and other previous CS 341 instructors.

Problem: Given n points in the plane, find their convex hull : the smallest
convex set containing the points.

Why?
Gives a better "shape" of a set of points rather than simply using a
minimal bounding box.
Shortest perimeter fence
Robot motion planning

Petrick (SCS, UW) CS341 – Module Underlying Concepts Winter 2025 1 / 6



Algorithm 1: Brute Force

Equivalent Definition: The convex hull is a polygon whose sides are
formed by lines ℓ that go through at least 2 points and have no points to
one side of ℓ.

Alg 1: For all pairs of points r , s, define a line ℓ through r and s. If all
other points lie on only one side of ℓ then ℓ is part of the convex hull.

Runtime Alg 1:
Θ(1) to check which side of ℓ a point is on.
O(n) points to check - if all on the same side.
n2 pairs of points (possible lines to check).

Total: O(n3)

Petrick (SCS, UW) CS341 – Module Underlying Concepts Winter 2025 2 / 6



Algorithm 2: Jarvis March
Alg 2: Once we have a first line ℓ through points r and s, there is a
natural next line ℓ′:

Rotate ℓ at point s until it hits another point, call it t.

Finding ℓ′:
Compute all lines through s and another point.
From all such lines, find the one that minimizes angle α with ℓ.

Runtime Alg 2:
Finding a first line can be done in O(n).
Next line: consider O(n) lines, find min α from a set of size O(n).
Convex hull may be composed of O(n) points (lines).

Total: O(n) + O(n2) which is O(n2)
Note: Let h be the number of points on the convex hull.
Then, runtime is O(hn). If only O(1) points on hull then runtime is O(n).

Petrick (SCS, UW) CS341 – Module Underlying Concepts Winter 2025 3 / 6



Algorithm 3: Reduction Approach
Reduction: Solve a new problem (convex hull) by using an algorithm you
already know (sorting).

Alg 3: Sort points by x-coordinate.
Traverse points (from leftmost) to find the "top" edges of convex hull.
If next point makes a concave angle, skip it - may have to do some
backtracking.
Repeat this process to find the "bottom" edges of convex hull.

Runtime Alg 3:
Sort points: O(n log n).
Traverse points twice to find top/bottom of convex hull O(n) - can
argue each time we backtrack a point is removed from consideration.

Total: O(n log n)
Note: If we can improve sorting, we can improve this runtime.

Petrick (SCS, UW) CS341 – Module Underlying Concepts Winter 2025 4 / 6



Algorithm 4: Divide and Conquer Approach

Divide: Divide points in half (left and right).
Find the convex hull on each side. Base case?
Conquer: Combine by finding upper and lower bridges between the two
convex hulls.

Initial egde e: edge from max x on left to min x on right.
"walk e up" to find upper bridge.
"walk e down" to find lower bridge.

Runtime Alg 4:
O(n) to find median (divide points), upper and lower bridges.
Recurrence Relation: T (n) = 2T (n/2) + O(n)

Total: O(n log n)

Petrick (SCS, UW) CS341 – Module Underlying Concepts Winter 2025 5 / 6



Can we do better?

Alg 1: O(n3)
Alg 2: O(n2) with special case O(hn)
Alg 3 and Alg 4: O(n log n)
Which is better: O(hn) or O(n log n)?

If we can find the convex hull faster, then we can sort faster!

A Sorting Algorithm: Given n unsorted numbers, x1, x2, . . . , xn.
Create 2D points (x1, x2

1 ), (x2, x2
2 ), . . . , (xn, x2

n ).
Note, the points now form a 2D parabola which is a convex shape.
Find convex hull. Traversing it gives original numbers in sorted order.

Runtime: O(n) + time to find Convex Hull
Recall: If comparison based, sorting is Ω(n log n)

Timothy Chan (1996): "Output sensitive convex hull" in O(n log h).

Petrick (SCS, UW) CS341 – Module Underlying Concepts Winter 2025 6 / 6


	Lec 1 Case Study: Convex Hull
	Algorithm 1: Brute Force
	Algorithm 2: Jarvis March
	Algorithm 3: Reduction Approach
	Algorithm 4: Divide and Conquer Approach
	Can we do better?

