Lec 1 Case Study: Convex Hull

Thanks to Anna Lubiw and other previous CS 341 instructors.

Problem: Given n points in the plane, find their convex hull: the smallest
convex set containing the points.

Why?

@ Gives a better "shape" of a set of points rather than simply using a
minimal bounding box.
@ Shortest perimeter fence

@ Robot motion planning

Petrick (SCS, UW) CS341 — Module Underlying Concepts Winter 2025 1/6



Algorithm 1: Brute Force

Equivalent Definition: The convex hull is a polygon whose sides are
formed by lines ¢ that go through at least 2 points and have no points to
one side of £.

Alg 1: For all pairs of points r, s, define a line £ through r and s. If all
other points lie on only one side of ¢ then £ is part of the convex hull.

Runtime Alg 1:
@ O(1) to check which side of £ a point is on.
e O(n) points to check - if all on the same side.
o n? pairs of points (possible lines to check).
Total: O(n?)

Petrick (SCS, UW) CS341 — Module Underlying Concepts Winter 2025 2/6



Algorithm 2: Jarvis March
Alg 2: Once we have a first line ¢ through points r and s, there is a
natural next line ¢':
@ Rotate £ at point s until it hits another point, call it t.
Finding /':
@ Compute all lines through s and another point.

@ From all such lines, find the one that minimizes angle o with £.

Runtime Alg 2:
e Finding a first line can be done in O(n).
o Next line: consider O(n) lines, find min « from a set of size O(n).
e Convex hull may be composed of O(n) points (lines).
Total: O(n) + O(n?) which is O(n?)
Note: Let h be the number of points on the convex hull.
Then, runtime is O(hn). If only O(1) points on hull then runtime is O(n).

Petrick (SCS, UW) CS341 — Module Underlying Concepts Winter 2025 3/6



Algorithm 3: Reduction Approach

Reduction: Solve a new problem (convex hull) by using an algorithm you
already know (sorting).

Alg 3: Sort points by x-coordinate.

@ Traverse points (from leftmost) to find the "top" edges of convex hull.
If next point makes a concave angle, skip it - may have to do some
backtracking.

@ Repeat this process to find the "bottom" edges of convex hull.

Runtime Alg 3:
@ Sort points: O(nlog n).
e Traverse points twice to find top/bottom of convex hull O(n) - can
argue each time we backtrack a point is removed from consideration.
Total: O(nlogn)
Note: If we can improve sorting, we can improve this runtime.

Petrick (SCS, UW) CS341 — Module Underlying Concepts Winter 2025 4/6



Algorithm 4: Divide and Conquer Approach

Divide: Divide points in half (left and right).
Find the convex hull on each side. Base case?

Conquer: Combine by finding upper and lower bridges between the two
convex hulls.

@ Initial egde e: edge from max x on left to min x on right.

e "walk e up" to find upper bridge.
"walk e down" to find lower bridge.

Runtime Alg 4:
e O(n) to find median (divide points), upper and lower bridges.
@ Recurrence Relation: T(n) =2T(n/2)+ O(n)

Total: O(nlogn)

Petrick (SCS, UW) CS341 — Module Underlying Concepts Winter 2025 5/6



Can we do better?

Alg 1: O(n®)
Alg 2: O(n?) with special case O(hn)
Alg 3 and Alg 4: O(nlogn)

Which is better: O(hn) or O(nlogn)?
If we can find the convex hull faster, then we can sort faster!

A Sorting Algorithm: Given n unsorted numbers, x1,x2, ..., Xp.
e Create 2D points (x1,x?), (x2,%3), - - -, (Xn, X2).
Note, the points now form a 2D parabola which is a convex shape.
@ Find convex hull. Traversing it gives original numbers in sorted order.
Runtime: O(n) + time to find Convex Hull
Recall: If comparison based, sorting is Q(nlog n)

Timothy Chan (1996): "Output sensitive convex hull" in O(nlog h).

Petrick (SCS, UW) CS341 — Module Underlying Concepts Winter 2025 6/6



	Lec 1 Case Study: Convex Hull
	Algorithm 1: Brute Force
	Algorithm 2: Jarvis March
	Algorithm 3: Reduction Approach
	Algorithm 4: Divide and Conquer Approach
	Can we do better?

