Module Greedy Algorithms

Thanks to Anna Lubiw and other previous CS 341 instructors.

Optimization Problems
Greedy Algorithms
Intro Example: Making Change

Interval Scheduling

o
o
o
@ Minimizing Completion Time
o
@ Exchange Proof

o

Fractional Knapsack

Petrick (SCS, UW) CS341 — Module Greedy Algorithms Winter 2026 1/26

Optimization Problems

Problem: Given a problem instance, find a feasible solution that
maximizes (or minimizes) a certain objective function.

Problem Instance: Input for the specified problem.

Problem Constraints: Requirements that must be satisfied by any
feasible solution.

Feasible Solution: For any problem instance /, feasible(/) is the set of all
outputs (i.e., solutions) for the instance / that satisfy the given constraints.

Objective Function: A function f :feasible(l) — R* U {0}. We often
think of f as being a profit or a cost function.

Optimal Solution: A feasible solution X € feasible(/) such that the profit
f(X) is maximized (or the cost f(X) is minimized).

Petrick (SCS, UW) CS341 — Module Greedy Algorithms Winter 2026 2 /26

Making Change

Problem

Making Change

Instance: A set C of coin denominations for a coin system and a given
amount M.

Find: The minimum number of coins of denominations from C that sum
to M.

v

For example: Make change for $3.47 using the Canadian coin system.
How did you make your choice for each coin?

Is your solution the minimal number of coins possible?
Does this work for all coin systems?

Petrick (SCS, UW) CS341 — Module Greedy Algorithms Winter 2026 3/26

Greedy Algorithms

Partial Solutions: Given a problem instance /, it should be possible to
write a feasible solution X as a tuple [x1, x2, ..., x,] for some integer n,
where x; € X for all i. A tuple [x1,...,x;] where i < nis a partial solution
if no constraints are violated.

Note: it may be the case that a partial solution cannot be extended to a
feasible solution.

Choice Set: For a partial solution X = [x1,..., x| where i < n, we define
the choice set

choice(X) ={y € X : [x1,...,xi,y] is a partial solution}.

Petrick (SCS, UW) CS341 — Module Greedy Algorithms Winter 2026 4 /26

Greedy Algorithms

Local Evaluation Criterion: For any y € X, g(y) is a
local evaluation criterion that measures the cost or profit of including y in
a (partial) solution.

Extension: Given a partial solution X = [x1,..., x| where i < n, choose
y € choice(X) so that g(y) is as small (or large) as possible. Update X to
be the (i 4+ 1)-tuple [x1,...,xi, ¥].

Greedy Algorithm Starting with the “empty” partial solution, repeatedly
extend it until a feasible solution X is constructed. This feasible solution
may or may not be optimal.

Petrick (SCS, UW) CS341 — Module Greedy Algorithms Winter 2026 5 /26

Greedy Algorithms

Greedy algorithms do no looking ahead and no backtracking.

Greedy algorithms can usually be implemented efficiently. Often they
consist of a preprocessing step based on the function g, followed by a
single pass through the data.

In a greedy algorithm, only one feasible solution is constructed.

The execution of a greedy algorithm is based on local criteria (i.e.,
the values of the function g).

Correctness: For certain greedy algorithms, it is possible to prove that
they always yield optimal solutions. However, these proofs can be
tricky and complicated!

Petrick (SCS, UW) CS341 — Module Greedy Algorithms Winter 2026 6 /26

Minimizing Completion Time

Problem
Minimizing Completion Time
Instance: A set of jobs {1,...,n} with processing times t(); i.e. job i

has processing time t(1i).
Find: An ordering of the jobs that minimizes the sum of completion
times for all jobs T. Also, give T.

For example: n =5 with processing times [2,8,1, 10, 5]
If processed in order 1, 2, 3, 4, 5:

o T =2+ (84+2)+ (1+8+2) + (10+1+8+2) + (54+10+1+8+2) =70

In order 3, 1, 2, 5, 4 processing times are [1,2,8,5,10]:
o T =1+ (2+41) + (84+2+1) + (5+8+2+1) + (10+5+8+2+1) = 57

In order 3, 1, 5, 2, 4 processing times are [1,2,5,8,10]:
o T =1+ (2+1) + (5+2+1) + (8+5+2+1) + (10+8+5+2+1) = 54

Petrick (SCS, UW) CS341 — Module Greedy Algorithms Winter 2026 7 /26

Greedy Algorithm

Algorithm: Order jobs in non-decreasing order of processing times.

Problem
To prove optimal

o Let L =1j1,...,jn] be an ordering of the jobs that is not in
non-decreasing order of processing times.

@ Then there exists some i where t(j;) > t(ji+1).

@ Show that we can find a better solution (or at least no worse) by
inverting this pair.

@ We can then continue to invert pairs until the order is in

non-decreasing order of processing time, concluding our algorithm is
optimal.

Petrick (SCS, UW) CS341 — Module Greedy Algorithms Winter 2026 8 /26

To Prove Optimal

There exists some i where t(j;) > t(ji+1).

1. Note: the sum of time completions before job i and after job i 4+ 1
remain the same in both initial and modified orderings.

2. Let Tbefore — Zj:jl---ji—l t(_j)

3. In L: (Tbefore + t(ji)) + (Tbefore + t(ji) + t(,ji+1))
Inverted: (Tbefore + t(ji—i—l)) + (Tbefore + t(ji—i—l) + t(ji))

4. Change: t(_j;+1) — t(j,') < 0 since t(j,') > t(ji+1)
These two jobs are now in non-decreasing order of processing time —
One step closer to our solution.

If t(ji) > t(ji+1) then inverted is a better solution; otherwise, it is no
worse.

Recall from CS240
@ Optimal static order for linked list implementation of dictionaries

@ Same result (up to reverse), same proof

Petrick (SCS, UW) CS341 — Module Greedy Algorithms Winter 2026 9 /26

Interval Selection

Problem

Interval Scheduling or Activity Selection

Instance: A setZ ={1,...,n} of intervals.

For1 <i<n,i=][s;f), wheres; is the start time and f; is the
finish time of i.

Find: A subset S C T of pairwise disjoint intervals of maximum size
(i.e., one that maximizes |S|).

Petrick (SCS, UW) CS341 — Module Greedy Algorithms Winter 2026 10 / 26

Possible Greedy Strategies for Interval Scheduling

© Select the activity/interval that has the earliest start time; i.e. local
evaluation criterion is s;.

@ Select the activity that has the shortest length; i.e. the local
evaluation criterion is f; — s;.

© Select the activity with the fewest conflicts with other activities.

@ Select the activity with the earliest finishing time; i.e. the local
evaluation criterion is f;.

Note: Choices above also assume that the selection chosen is also disjoint
from all previously chosen activities.

Does one of these strategies yield a correct greedy algorithm?

Petrick (SCS, UW) CS341 — Module Greedy Algorithms Winter 2026 11 /26

Select Interval with Earliest Finish Time

Sort intervals 1..n by finish time and relabel so f; < ... < f,
S=90
for i+ 1 to ndo

if interval / is pairwise disjoint with all intervals in S then

S« Su{i}

ok wn =

Analysis: O(nlog n) to sort + O(n) loop = O(nlogn)

Correctness: 2 approaches
© Greedy always stays ahead
@ “Exchange"” proof

Petrick (SCS, UW) CS341 — Module Greedy Algorithms Winter 2026 12 /26

Proof of Correctness - Greedy always stays ahead

Lemma: The greedy algorithm (select earliest finish time) returns a
maximum size set A of disjoint activities.

Proof: Let A= {ai,...,ak}, sorted by finish time.

Compare A to an optimum solution B = {b1, ..., by}, sorted by finish
time. Thus, £ > k and we want to prove £ = k.

Petrick (SCS, UW) CS341 — Module Greedy Algorithms Winter 2026 13 /26

Proof of Correctness - Greedy always stays ahead

Lemma: The greedy algorithm (select earliest finish time) returns a
maximum size set A of disjoint activities.

Proof: Let A= {ai,...,ak}, sorted by finish time.

Compare A to an optimum solution B = {b1, ..., by}, sorted by finish
time. Thus, £ > k and we want to prove £ = k.

Idea: At every step /, we can do at least as well by choosing a;.

Claim: ay,...,a;, bj+1,..., by is an optimal solution for all i.

Petrick (SCS, UW) CS341 — Module Greedy Algorithms Winter 2026 13 /26

Greedy always stays ahead - Induction!

Basis: i =1

a; had the earliest finish time of all activities so finish(ay) < finish(by).
Thus, a; is disjoint from all b; for 2 < j < /.

Thus, we can replace b; with a;.

Induction Step: Suppose a1,...,a;_1,bj,..., by is an optimal solution.

Petrick (SCS, UW) CS341 — Module Greedy Algorithms Winter 2026 14 / 26

Greedy always stays ahead - Induction!

Basis: i =1

a; had the earliest finish time of all activities so finish(ay) < finish(by).
Thus, a; is disjoint from all b; for 2 < j < /.

Thus, we can replace b; with a;.

Induction Step: Suppose a1,...,a;_1,bj,..., by is an optimal solution.

b; does not intersect a;_1 so, the greedy algorithm could have chosen b;;
however, it chose a; instead, so finish(a;) < finish(b;).

a;j is then also disjoint from from all by for i +1 < k < /.
Thus, we can replace b; with a;.

Petrick (SCS, UW) CS341 — Module Greedy Algorithms Winter 2026 14 / 26

Greedy always stays ahead - Induction!

Basis: i =1

a; had the earliest finish time of all activities so finish(ay) < finish(by).
Thus, a; is disjoint from all b; for 2 < j < /.

Thus, we can replace b; with a;.

Induction Step: Suppose a1,...,a;_1,bj,..., by is an optimal solution.

b; does not intersect a;_1 so, the greedy algorithm could have chosen b;;
however, it chose a; instead, so finish(a;) < finish(b;).

a;j is then also disjoint from from all by for i +1 < k < /.

Thus, we can replace b; with a;.

This proves the claim. To finish proving the lemma we argue that if kK < /¢
then ag, ..., ak, bk+1, ..., b is an optimal solution. But then the greedy
algorithm would have more choices after ay, so k must equal /.

Petrick (SCS, UW) CS341 — Module Greedy Algorithms Winter 2026 14 / 26

Scheduling to Minimize Lateness

Suppose you are given a number of tasks to complete:

Job Time Required Deadline

CS341 4 hours in 9 hours
Stat231 2 hours in 6 hours
Psych 4 hours in 14 hours
CS350 10 hours in 25 hours

Can you do everything by its deadline?
Greedy Strategy?
Can we generalize this problem?

Petrick (SCS, UW) CS341 — Module Greedy Algorithms Winter 2026 15 / 26

Scheduling to Minimize Lateness

Problem
Scheduling to Minimize Lateness
Instance: A set of jobs {1,...,n} where job i requires time t; to

complete and has a deadline of d;.
Find: A schedule, allowing some jobs to be late but minimizing the
maximum lateness.

Note: this is different from minimizing the sum of lateness or minimizing
average lateness.

A schedule computes all jobs on time <= its maximum lateness is O.

Petrick (SCS, UW) CS341 — Module Greedy Algorithms Winter 2026 16 / 26

Exchange Proofs

General Idea: Show how we can covert an optimal solution into the greedy
solution.

@ Let G be the solution produced by the greedy algorithm.
Let O be an optimal solution.

@ If G is the same as O then greedy is also optimal.
If G # O then find a pair of items that are out of order in O when
compared with G.

@ Show that by exchanging the order of these two items, we create a
new solution that is better (or at least no worse); i.e. the resulting
solution remains optimal.

Note: the reasoning is typically based on how the greedy algorithm
makes its choice.

@ By making a number of exchanges we will obtain the greedy solution
(similar to bubblesort) and since each exchange makes the solution no
worse, the greedy algorithm is also optimal.

Petrick (SCS, UW) CS341 — Module Greedy Algorithms Winter 2026 17 / 26

Knapsack Problems

Problem

Knapsack

Instance: A set if items 1,...,n with values v1,...,v,, weights
wi,...,wp and a capacity, W. These are all positive integers.

Feasible solution: An n-tuple X =[x, ...,xn| where >-7_ 1 wix; < W.

In the 0-1 Knapsack problem (often denoted just as Knapsack), we
require that x; € {0,1}, 1 </ < n.

In the Rational Knapsack or Fractional Knapsack problem, we require
that x; € Q and 0 < x; < 1,1 << n.

Find: A feasible solution X that maximizes y i vix;.

Note: Q is the set of rational numbers.

Petrick (SCS, UW) CS341 — Module Greedy Algorithms Winter 2026 18 / 26

Possible Greedy Strategies for Knapsack Problems

@ Consider the items in decreasing order of value (i.e., the local
evaluation criterion is p;).

@ Consider the items in increasing order of weight (i.e., the local
evaluation criterion is w;).

© Consider the items in decreasing order of value divided by weight (i.e.,
the local evaluation criterion is v;/w;).

Does one of these strategies yield a correct greedy algorithm for the
Fractional Knapsack problem?

Petrick (SCS, UW) CS341 — Module Greedy Algorithms Winter 2026 19 / 26

Knapsack Problems

Consider the following example where capacity W = 6.

Does ordering by value per weight help?

Petrick (SCS, UW)

Item i | Value v; | Weight w; | v;/w;
1 12 4 3
2 7.5 3 2.5
3 6 3 2
CS341 — Module Greedy Algorithms Winter 2026

20 / 26

Knapsack Problems

Consider the following example where capacity W = 6.

Item i | Value v; | Weight w; | v;/w;
1 12 4 3

2 7.5 3 2.5

3 6 3 2

Does ordering by value per weight help?
Fractional Knapsack: choosing highest value per weight is optimal.

Note: none of the greedy choices seem to be optimal for the 0-1 Knapsack
problem.

Petrick (SCS, UW) CS341 — Module Greedy Algorithms Winter 2026 20 / 26

Greedy Algorithm for Fractional Knapsack

Greedy Algorithm: Choose item with highest value per weight and choose
as much of it as possible.

X; is the weight of item i taken

1. Sort items 1..n by value per weight and relabel so (vi/wy) > ... > (vp/wy)
2 freeW «— W

3. fori+1tondo

4 x; < min{w;, freeW'}

5 freeW <« freeW — x;

A solution then looks like

[tem: 1 (2 | ...0j |j+1]...0n
Weight Taken: | x1 | xo | ... | x;j | O ... |0

Final weight is >~ x; = W (if > w; > W)
Final value: 3 Jix;
Running time: O(nlog n) to sort, O(n) to choose weights for each item.

Petrick (SCS, UW) CS341 — Module Greedy Algorithms Winter 2026 21 /26

Greedy Algorithm for Fractional Knapsack is correct

Claim: The greedy algorithm gives the optimal solution to the fractional
knapsack problem.

Proof: Assume items are ordered by .
Let the greedy solution be X1, X2, ..., Xk—1, Xk, - - -y X0y - « « s Xn.

Let an optimal solution be y1,y2, ..., Vk—1,Yks---s Ye, -« Yn-

Suppose y is an optimal solution that
matches x on a maximum number of indices, say M indices.

If M = n then we are done, so assume M < n; i.e. this implies the greedy
solution is not optimal

Petrick (SCS, UW) CS341 — Module Greedy Algorithms Winter 2026 22 /26

Greedy Algorithm for Fractional Knapsack is correct

Claim: The greedy algorithm gives the optimal solution to the fractional
knapsack problem.

Proof: Assume items are ordered by .
Let the greedy solution be X1, X2, ..., Xk—1, Xk, - - -y X0y - « « s Xn.
Let an optimal solution be y1,y2, ..., Vk—1,Yks---s Ye, -« Yn-

Suppose y is an optimal solution that
matches x on a maximum number of indices, say M indices.

If M = n then we are done, so assume M < n; i.e. this implies the greedy
solution is not optimal (so we should then be able to find a contradiction).

Contradiction: show that there exists an optimal solution that matches x
on at least M 4+ 1 indicies.

Petrick (SCS, UW) CS341 — Module Greedy Algorithms Winter 2026 22 /26

The Stable Marriage Problem

Note: rephrased using co-op students and employers offering jobs.

Problem

Stable Marriage

Instance: A set of n co-op students S = [s1,...,s,], and a set of n
employers offering jobs, E = [ey, ..., ep].

Each employer e; has a preference ranking of the n students, and each
student s; has a preference ranking of the n employers:

pref(e;, j) = sk if sk is the j-th preference of employer e; and

pref(s;, j) = ey if e is the j-th favourite employer of student s;.

Find: A matching of the n students with the n employers such that there
does not exist a pair (s;, €j) who are not matched to each other, but prefer
each other to their existing matches.

A matching with this this property is called a stable matching.

Petrick (SCS, UW) CS341 — Module Greedy Algorithms Winter 2026 23 /26

Overview of the Gale-Shapley Algorithm

@ Employers offer jobs to students.

o If a student accepts a job offer, then the pair are matched; the
student is employed.

@ An unemployed student must accept a job if they are offered one.

Petrick (SCS, UW) CS341 — Module Greedy Algorithms Winter 2026 24 / 26

Overview of the Gale-Shapley Algorithm

@ Employers offer jobs to students.

o If a student accepts a job offer, then the pair are matched; the
student is employed.

@ An unemployed student must accept a job if they are offered one.

@ However, if an employed student receives an offer from an employer
whom they prefer to their current match, then they cancel their
existing match and the student becomes employed by (matched with)
their new employer; the previous employer no longer has a match.

Petrick (SCS, UW) CS341 — Module Greedy Algorithms Winter 2026 24 / 26

Overview of the Gale-Shapley Algorithm

Employers offer jobs to students.

If a student accepts a job offer, then the pair are matched; the
student is employed.

An unemployed student must accept a job if they are offered one.

However, if an employed student receives an offer from an employer
whom they prefer to their current match, then they cancel their
existing match and the student becomes employed by (matched with)
their new employer; the previous employer no longer has a match.

If an employed student receives an offer from an employer, but they
prefer the job they already have, the offer is rejected.

Matched/Employed students never become unmatched/unemployed.

An employer might make a number of offers (up to n); the order of
the offers is determined by the employer’s preference list.

Petrick (SCS, UW) CS341 — Module Greedy Algorithms Winter 2026 24 / 26

Gale-Shapley Algorithm

Gale-Shapley(S, E, pref)

1 Match + ()

2 while there exists an employer ¢; still looking to hire do

3 Let s; be the next student in ¢;'s preference list

4, if s; is unemployed then

5. Match <— Match U {(e;, ;) }

6 else

7 if s; prefers e; (over their current match e;) then

8 Match <— Match{(ex,s;)} U {(e;,s;)}
Note: employer e is now looking to hire again

9. return Match

Petrick (SCS, UW) CS341 — Module Greedy Algorithms Winter 2026 25/ 26

Questions

How do we prove that the Gale-Shapley algorithm always terminates?

How many iterations does this algorithm require in the worst case?

How do we prove that this algorithm is correct, i.e., that it finds a
stable matching?

@ Is there an efficient way to identify an employer still looking to hire
at any point in the algorithm? What data structure would be helpful
in doing this?

What can we say about the complexity of the algorithm?

Petrick (SCS, UW) CS341 — Module Greedy Algorithms Winter 2026 26 / 26

	Module Greedy Algorithms
	Optimization Problems
	Making Change
	Greedy Algorithms
	Greedy Algorithms
	Greedy Algorithms
	Minimizing Completion Time
	Greedy Algorithm
	To Prove Optimal
	Interval Selection
	Possible Greedy Strategies for Interval Scheduling
	Select Interval with Earliest Finish Time
	Proof of Correctness - Greedy always stays ahead
	Greedy always stays ahead - Induction!
	Scheduling to Minimize Lateness
	Scheduling to Minimize Lateness
	Exchange Proofs
	Knapsack Problems
	Possible Greedy Strategies for Knapsack Problems
	Knapsack Problems
	Greedy Algorithm for Fractional Knapsack
	Greedy Algorithm for Fractional Knapsack is correct
	The Stable Marriage Problem
	Overview of the Gale-Shapley Algorithm
	Gale-Shapley Algorithm
	Questions

