
System Modelling
* Based on notes by Brad Lushman, used with ... I’ll ask later.

We want to visualize the structure of the system we are trying to build.
Abstractions and relationships among them.
Aid in design and implementation - the visualization is easier to
understand the system than understanding all of the code.

UML - Unified Modelling Language
https://student.cs.uwaterloo.ca/ cs246/S23/resources.shtml

A class in UML is drawn as a box with 3 sections:
1. Class Name
2. (Optional) Fields: < <Access Specifier> Name : Type >

3. (Optional) Methods: < <Access Specifier> Name() : Type >

Access Specifiers: ’-’ represents private, ’+’ represents public

(SCS, UW) CS246 – Module Encapsulation Spring 2023 1 / 5



Relationship: Composition of classes

Embedding an object B inside another object A where B’s only purpose is
to be used in A. A "owns a" B.

If A owns a B, then typically
B has no identity outside A - no independent existence
if A is destroyed, then B is destroyed
if A is copied, B is copied (deep copy)

Notation: A arrow with a solid diamond tail pointing at B.
Arrow is annotated with field names and multiplicities (1, 2, 0..*, etc).

(SCS, UW) CS246 – Module Encapsulation Spring 2023 2 / 5



Relationship: Aggregation

Embedding an object B inside another object A but B exist on its own. A
"has a" B.

If A has a" B, then typically
B exists apart from it’s association with A
if A is destroyed, B lives on
if A is copied, B is not (shallow copy) and copies of A will share the
same B

Notation: A arrow with an unfilled diamond tail pointing at B.

(SCS, UW) CS246 – Module Encapsulation Spring 2023 3 / 5



Case Study

Does a pointer field always mean non-ownership?

No! Consider Lists and Nodes.

A Node owns the Nodes that follow it - implementation of Big 5 is a good
indication of ownership. Then a List owns the first Node.
These ownerships are implemented by pointers.

Alternatively, you could view the List as owning all the Nodes within it.
Then, the List is likely taking responsibility for copying and destroying all
of the Nodes, rather than Node.
⇒ List may use an iterative (loop-based) implementation to manage
pointers rather than a recursive one where Nodes manage other Nodes.

(SCS, UW) CS246 – Module Encapsulation Spring 2023 4 / 5



Case Study

Does a pointer field always mean non-ownership?

No! Consider Lists and Nodes.

A Node owns the Nodes that follow it - implementation of Big 5 is a good
indication of ownership. Then a List owns the first Node.
These ownerships are implemented by pointers.

Alternatively, you could view the List as owning all the Nodes within it.
Then, the List is likely taking responsibility for copying and destroying all
of the Nodes, rather than Node.
⇒ List may use an iterative (loop-based) implementation to manage
pointers rather than a recursive one where Nodes manage other Nodes.

(SCS, UW) CS246 – Module Encapsulation Spring 2023 4 / 5



Relationship: Inheritance

B "is a" A
A is called a Base class or Superclass
B is called a Derived class or Subclass

Derived classes inherit fields and methods from the base class.
Any method that can be called on the Base class can be called on the
derived class.

Rules: public inheritance ...

(SCS, UW) CS246 – Module Encapsulation Spring 2023 5 / 5


	System Modelling
	Relationship: Composition of classes
	Relationship: Aggregation
	Case Study
	Relationship: Inheritance

