
Exceptions
* Based on notes by Brad Lushman, used with ... I’ll ask later.

Suppose v is a vector<int>.
v[i] is the i-th element of v. Out-of-bounds is unchecked. If i goes
out-of-bounds, undefined behaviour.
v.at(i) is the i-th element of v but out-of-bounds is checked.

What happens if v.at(i) goes out of bounds?
vector’s code can detect the error but doesn’t know what to do.
client is the one who should decide what to do, how to recover, etc
but can’t detect the error.

⇒ Error recovery is inherently a non-local problem.

When an error condition arises in C++, the function raises an exception.

(SCS, UW) CS246 – Module Exceptions Spring 2023 1 / 9



Exceptions
Default behaviour: Execution stops.
However, we can write handlers to catch exceptions and deal with them.

vector<T>::at throws an exception of type std::out_of_range when
it fails. We can write a handler to catch this exception.

#include <stdexcept>
...

try {
cout << v.at(10000) << endl;

}
catch (out_of_range r) {

cerr << "Range error:" << r.what() << endl;
}

try block contains statements that may raise an exception.
what() returns null terminated char sequence that may be used to
identify the exception.

(SCS, UW) CS246 – Module Exceptions Spring 2023 2 / 9



When do exceptions get handled?
out_of_range is a class.
throw out_of_range{"f"} calls ctor with argument "f" that sets
it’s what() to return "f" and raises the exception.

void f() { throw out_of_range{"f"}; }
void g() { f(); }
void h() { g(); }

int main() {
try { h(); }
catch (out_of_range) { ... }

}

Sequence: main calls h, h calls g, g calls f, then f raises out_of_range.

Control goes back through the call chain (unwinds the stack) looking for
a handler: checks g, h, then main where main handles the exception.

If no matching handler in entire chain ⇒ program terminates.
(SCS, UW) CS246 – Module Exceptions Spring 2023 3 / 9



Handlers can also throw exceptions
Multiple handlers can be part of the recovery job; a handler can execute
some corrective code, then throw an exception to be caught by another
handler.

try { ... }
catch (SomeErrorType s) { ... // partial recovery

throw SomeOtherError{ ... }; // throw another exception
}

OR

try { ... }
catch (SomeErrorType s) { ...

throw; // throw the same exception
Alt: throw s; // Not necessarily the same

}

(SCS, UW) CS246 – Module Exceptions Spring 2023 4 / 9



throw vs throw s

Recall: catch (SomeErrorType s) { ... }

Suppose exception s is actually a type that is a subclass of
SomeErrorType, rather than SomeErrorType itself.

throw s; throws a new exception of type SomeErrorType slicing s
into type SomeErrorType.
throw; rethrows the actual exception that was caught, retaining its
actual type.

(SCS, UW) CS246 – Module Exceptions Spring 2023 5 / 9



Catch anything, throw anything

Can use ... as a catch-all for exceptions.

try {
. . .

}
catch (...) { // literally use ... here

. . .
}

Don’t have to throw objects. Can throw anything.
exfact and exfib (in repository) throw ints to compute factorial
and Fibonacci.

Note: throwing exceptions is much slower than the recursive versions.

(SCS, UW) CS246 – Module Exceptions Spring 2023 6 / 9



Define your own exceptions
Many existing exceptions, but you can also define your own exception
classes for errors:

class BadInput {};

try {
if (int n; !(cin >> n)) { throw BadInput{}; }
catch (BadInput &) {

cerr << "Input not well-formed\n";
}

}

Note: exception caught by reference which prevents the exception from
being sliced (if it’s from a subclass of BadInput). Instead it will be
treated like the kind of object that it actually is.

Catching exceptions by reference is usually the right thing to do.

Maxim in C++: Throw by value, catch by reference.

(SCS, UW) CS246 – Module Exceptions Spring 2023 7 / 9



Other exceptions

NEVER let a dtor throw an exception!
By default, the program will terminate immediately by calling
std::terminate. Also, if a dtor is being executed during stack
unwinding, while dealing with another exception, and it throws an
exception, there will be 2 active, unhandled exceptions and the program
will about immediately.

Recall from early on: copy assignment operator for Node, Attempt #3
// If new fails, Node will still be in a valid state

When new fails, it throws the exception: std::bad_alloc.

(SCS, UW) CS246 – Module Exceptions Spring 2023 8 / 9



(SCS, UW) CS246 – Module Exceptions Spring 2023 9 / 9


	Exceptions
	Exceptions
	When do exceptions get handled?
	Handlers can also throw exceptions
	throw vs throw s 
	Catch anything, throw anything
	Define your own exceptions
	Other exceptions
	

