Encapsulation

* Based on notes by Brad Lushman, used with ... I'll ask later.

@ Encapsulation is the binding of data together with the methods that
operate on the data. Also, how we limit access to the data through
the provided methods.

@ Want clients to treat objects as capsules - similar to black boxes.

@ Clients only need to understand what functionality is provided not
how it is implemented; i.e. a client only needs an "abstraction" of
how it works.

@ Want to avoid: clients writing code dependent on an implementation
(that could change), using code in a way that violates how it was
intended to be used (violating invariants), etc.

(SCS, uw) CS246 — Module Encapsulation Spring 2023 1/15

Encapsulating Linked Lists - Interface

Wrapper class List has exclusive access to the underlying Node objects.

// Interface: list.cc

export class List {

struct Node; // Private nested class
Node *thelList = nullptr;

public:
void addToFront(int n);
int &ith(int i);
~List();

(SCS, uw) CS246 — Module Encapsulation Spring 2023 2 /15

Encapsulating Linked Lists - Implementation

// Implementation: list-impl.cc

struct List:: Node { // Nested class
int data;
Node *next;

~Node() { delete next; }
};
List:: ~List() { delete theList; }

void List::addToFront(int n) {
thelList = new Node{n, thelList};
}
int &List::ith(int i) {
Node *cur = thelist;
for (int j = 0; j < i; ++j, cur = cur->next);
return cur->data;

(SCS, uw) CS246 — Module Encapsulation Spring 2023

3/15

Encapsulating Linked Lists

@ stuct Node is under the private section in List
@ Node *thelist is also private in List

= The nodes are only accessible inside List and only List can directly
manipulate Node objects (Encapsulation).

= This allows us to guarantee the invariant: next is either nullptr of a
Node allocated by new - since we control the Node objects.

How do we traverse the linked list?

(SCS, uw) CS246 — Module Encapsulation Spring 2023 4 /15

Encapsulating Linked Lists

@ stuct Node is under the private section in List
@ Node *thelist is also private in List

= The nodes are only accessible inside List and only List can directly
manipulate Node objects (Encapsulation).

= This allows us to guarantee the invariant: next is either nullptr of a
Node allocated by new - since we control the Node objects.

How do we traverse the linked list?

Use List::ith(i) for i=0, 1, 2, ..., n-1

= Runtime: O(n?) to traverse the list!

Many of the operations we want to implement will traverse the list and we
don’t want them to take O(n?), we want O(n).

(SCS, uw) CS246 — Module Encapsulation Spring 2023 4 /15

l[terator Pattern

We want to maintain properties of encapsulation:

@ hide implementation details = if the class implementation changes,
client code should be uneffected

@ design to prevent client misuse; limiting access and exposure of
internal details; such as Node structure

(SCS, uw) CS246 — Module Encapsulation Spring 2023 5/15

l[terator Pattern

We want to maintain properties of encapsulation:

@ hide implementation details = if the class implementation changes,
client code should be uneffected

@ design to prevent client misuse; limiting access and exposure of
internal details; such as Node structure

We also want to allow a client to traverse the List in an efficient and safe
way (limit access to the nodes details such as memory addresses, etc)
= create a class that manages access to nodes.

@ Need an abstraction of a pointer.

@ Functions that will allow client to walk the list without exposing the
pointers.

= lterator Pattern

(SCS, uw) CS246 — Module Encapsulation Spring 2023 5/15

l[terator Pattern

What do we want to be able to do?

@ Move from one item in the List to another ("increment the pointer").
Access the data at the current location ("dereference the pointer")
Have a starting point: begin().

Have a finishing point: end ().

Be able to check if we are at the end of not: operator!=

class List {
struct Node;
Node *thelList;
public:

(SCS, uw) CS246 — Module Encapsulation Spring 2023 6 /15

lterator Pattern - Iterator class (nested in List)

public:

class Iterator {
Node *p; // Private
public:
explicit Iterator(Node *p): p{p} {}
int &operator*() { return p->data; }
Iterator &operator++() {
P = p—>next;
return *this;
}
bool operator!=(const Iterator &other) const {
return (p !'= other.p);
}
3
Iterator begin() const { return Iterator{thelList}; }
Iterator end() const { return Iterator{mullptr}; }

(SCS, uw) CS246 — Module Encapsulation Spring 2023 7 /15

Iterator Pattern - client usage

int main() {
List 1st;
1st.addToFront (1) ;
1st.addToFront(2);
1st.addToFront(3);

// What type is auto here?
for (auto it = lst.begin(); it != lst.end(); ++it) {
cout << *it << endl;
}
}

(SCS, uw) CS246 — Module Encapsulation Spring 2023 8 /15

Iterator Pattern - client usage

int main() {
List 1lst;
1st.addToFront(1);
1st.addToFront(2);
1st.addToFront(3);

// List::Iterator
for (auto it = lst.begin(); it != 1lst.end(); ++it) {
cout << *it << endl;

}

Note: at each step operator++ returns an Iterator that is copied into it.
We then use operator* to get the node data.

(SCS, uw) CS246 — Module Encapsulation Spring 2023 9 /15

Built-in Support for the Iterator Pattern
Class Requirements:

@ Methods begin and end that return Iterators
Iterator Requirements:

@ Must support prefix operator++, operator!= and unary operatorx
Range-based for loop (C++11)

// access by value (makes a copy) of variable n, of type int
for (auto n : 1st) {
cout << n << endl; // implicit: n = *it

}

(SCS, uw) CS246 — Module Encapsulation Spring 2023 10 / 15

Built-in Support for the Iterator Pattern
Class Requirements:

@ Methods begin and end that return Iterators
Iterator Requirements:

@ Must support prefix operator++, operator!= and unary operator*
Range-based for loop (C++11)

// access by value (makes a copy) of variable n, of type int
for (auto n : 1st) {

cout << n << endl; // implicit: n = *it

}

Recall: int &operator*() { return p->data; } gives access to mutate.

// access by reference to be able to mutate
for (auto &n : 1st) {

n=...; // e.g. +i

(SCS, uw) CS246 — Module Encapsulation Spring 2023 10 / 15

More Encapsulation

The ctor for lterator is in the public section.
= A client of List can directly create Iterator objects violating
encapsulation. For example:

auto it = List::Iterator{nullptr};

We want the client to use begin and end.

Should we make List: :Iterator's ctor private?

(SCS, uw) CS246 — Module Encapsulation Spring 2023 11 /15

More Encapsulation

The ctor for lterator is in the public section.

= A client of List can directly create Iterator objects violating
encapsulation. For example:

auto it = List::Iterator{nullptr};

We want the client to use begin and end.

Should we make List: :Iterator's ctor private?

@ Client's can't call List::Iterator{...}

(SCS, uw) CS246 — Module Encapsulation Spring 2023 11 /15

More Encapsulation

The ctor for Iterator is in the public section.

= A client of List can directly create Iterator objects violating
encapsulation. For example:

auto it = List::Iterator{nullptr};

We want the client to use begin and end.
Should we make List: :Iterator's ctor private?
o Client's can't call List: :Iterator{...}

@ But then neither can List

We want to give List access but restrict others.

(SCS, uw) CS246 — Module Encapsulation Spring 2023 11 /15

Hello Friend!

Make List a friend to Iterator:

@ As a friend, List has access to all members of Iterator

class List {

public:

class Iterator {
Node *p;

explicit Iterator(Node *p); // ctor moved to private
public:
friend class List; // Can be placed anywhere in

oo // class Iterator
}s

(SCS, uw) CS246 — Module Encapsulation Spring 2023 12 /15

Only have friends you trust!

Clients are now forced to create iterators through begin and end since the
Iterator ctor is private.

List can create iterators as a friend.

Friendships weaken encapsulation - classes should have as few friends as
possible.

(SCS, uw) CS246 — Module Encapsulation Spring 2023 13 /15

Accessors and Mutators

Often create member functions to provide access to private fields.

class Vec {
int x, y;

public:

int getX() const { return x; } // accessor
int setY(int z) { y = z; } // mutator

(SCS, uw) CS246 — Module Encapsulation Spring 2023 14 / 15

What about operator«?

Needs access to private fields x and y but can't be a member function.

@ Can use accessors, getX and getY, if defined.

(SCS, uw) CS246 — Module Encapsulation Spring 2023 15/ 15

What about operator«?

Needs access to private fields x and y but can't be a member function.

@ Can use accessors, getX and getY, if defined.

@ If no accessors, make operator« a friend function

class Vec {

friend std::ostream &operator<<(std::ostream &out, const Vec &v);

};

ostream &operator<<(std::ostream &out, const Vec &v) {
// friends can access private members
return out << v.x << 7 7 KL v.y;

}

(SCS, uw) CS246 — Module Encapsulation Spring 2023 15/ 15

	Encapsulation
	Encapsulating Linked Lists - Interface
	Encapsulating Linked Lists - Implementation
	Encapsulating Linked Lists
	Iterator Pattern
	Iterator Pattern
	Iterator Pattern - Iterator class (nested in List)
	Iterator Pattern - client usage
	Iterator Pattern - client usage
	Built-in Support for the Iterator Pattern
	More Encapsulation
	Hello Friend!
	Only have friends you trust!
	Accessors and Mutators
	What about operator<<?

