
Encapsulation

* Based on notes by Brad Lushman, used with ... I’ll ask later.

Encapsulation is the binding of data together with the methods that
operate on the data. Also, how we limit access to the data through
the provided methods.
Want clients to treat objects as capsules - similar to black boxes.
Clients only need to understand what functionality is provided not
how it is implemented; i.e. a client only needs an "abstraction" of
how it works.
Want to avoid: clients writing code dependent on an implementation
(that could change), using code in a way that violates how it was
intended to be used (violating invariants), etc.

(SCS, UW) CS246 – Module Encapsulation Spring 2023 1 / 15



Encapsulating Linked Lists - Interface

Wrapper class List has exclusive access to the underlying Node objects.

// Interface: list.cc

export class List {
struct Node; // Private nested class
Node *theList = nullptr;

public:
void addToFront(int n);
int &ith(int i);
~List();
...

};

(SCS, UW) CS246 – Module Encapsulation Spring 2023 2 / 15



Encapsulating Linked Lists - Implementation
// Implementation: list-impl.cc
struct List:: Node { // Nested class

int data;
Node *next;
...
~Node() { delete next; }

};

List:: ~List() { delete theList; }

void List::addToFront(int n) {
theList = new Node{n, theList};

}

int &List::ith(int i) {
Node *cur = theList;
for (int j = 0; j < i; ++j, cur = cur->next);
return cur->data;

}
(SCS, UW) CS246 – Module Encapsulation Spring 2023 3 / 15



Encapsulating Linked Lists

stuct Node is under the private section in List

Node *theList is also private in List

⇒ The nodes are only accessible inside List and only List can directly
manipulate Node objects (Encapsulation).

⇒ This allows us to guarantee the invariant: next is either nullptr of a
Node allocated by new - since we control the Node objects.

How do we traverse the linked list?

Use List::ith(i) for i=0, 1, 2, ..., n-1
⇒ Runtime: O(n2) to traverse the list!

Many of the operations we want to implement will traverse the list and we
don’t want them to take O(n2), we want O(n).

(SCS, UW) CS246 – Module Encapsulation Spring 2023 4 / 15



Encapsulating Linked Lists

stuct Node is under the private section in List

Node *theList is also private in List

⇒ The nodes are only accessible inside List and only List can directly
manipulate Node objects (Encapsulation).

⇒ This allows us to guarantee the invariant: next is either nullptr of a
Node allocated by new - since we control the Node objects.

How do we traverse the linked list?

Use List::ith(i) for i=0, 1, 2, ..., n-1
⇒ Runtime: O(n2) to traverse the list!

Many of the operations we want to implement will traverse the list and we
don’t want them to take O(n2), we want O(n).

(SCS, UW) CS246 – Module Encapsulation Spring 2023 4 / 15



Iterator Pattern

We want to maintain properties of encapsulation:
hide implementation details ⇒ if the class implementation changes,
client code should be uneffected
design to prevent client misuse; limiting access and exposure of
internal details; such as Node structure

We also want to allow a client to traverse the List in an efficient and safe
way (limit access to the nodes details such as memory addresses, etc)
⇒ create a class that manages access to nodes.

Need an abstraction of a pointer.
Functions that will allow client to walk the list without exposing the
pointers.

⇒ Iterator Pattern

(SCS, UW) CS246 – Module Encapsulation Spring 2023 5 / 15



Iterator Pattern

We want to maintain properties of encapsulation:
hide implementation details ⇒ if the class implementation changes,
client code should be uneffected
design to prevent client misuse; limiting access and exposure of
internal details; such as Node structure

We also want to allow a client to traverse the List in an efficient and safe
way (limit access to the nodes details such as memory addresses, etc)
⇒ create a class that manages access to nodes.

Need an abstraction of a pointer.
Functions that will allow client to walk the list without exposing the
pointers.

⇒ Iterator Pattern

(SCS, UW) CS246 – Module Encapsulation Spring 2023 5 / 15



Iterator Pattern

What do we want to be able to do?
Move from one item in the List to another ("increment the pointer").
Access the data at the current location ("dereference the pointer").
Have a starting point: begin().
Have a finishing point: end().
Be able to check if we are at the end of not: operator!=

class List {
struct Node;
Node *theList;

public:

(SCS, UW) CS246 – Module Encapsulation Spring 2023 6 / 15



Iterator Pattern - Iterator class (nested in List)
public:

class Iterator {
Node *p; // Private

public:
explicit Iterator(Node *p): p{p} {}
int &operator*() { return p->data; }
Iterator &operator++() {

p = p->next;
return *this;

}
bool operator!=(const Iterator &other) const {

return (p != other.p);
}

};
Iterator begin() const { return Iterator{theList}; }
Iterator end() const { return Iterator{nullptr}; }

};
(SCS, UW) CS246 – Module Encapsulation Spring 2023 7 / 15



Iterator Pattern - client usage

int main() {
List lst;
lst.addToFront(1);
lst.addToFront(2);
lst.addToFront(3);

// What type is auto here?
for (auto it = lst.begin(); it != lst.end(); ++it) {

cout << *it << endl;
}

}

(SCS, UW) CS246 – Module Encapsulation Spring 2023 8 / 15



Iterator Pattern - client usage

int main() {
List lst;
lst.addToFront(1);
lst.addToFront(2);
lst.addToFront(3);

// List::Iterator
for (auto it = lst.begin(); it != lst.end(); ++it) {

cout << *it << endl;
}

}

Note: at each step operator++ returns an Iterator that is copied into it.
We then use operator* to get the node data.

(SCS, UW) CS246 – Module Encapsulation Spring 2023 9 / 15



Built-in Support for the Iterator Pattern
Class Requirements:

Methods begin and end that return Iterators

Iterator Requirements:
Must support prefix operator++, operator!= and unary operator*

Range-based for loop (C++11)

// access by value (makes a copy) of variable n, of type int
for (auto n : lst) {

cout << n << endl; // implicit: n = *it
}

Recall: int &operator*() { return p->data; } gives access to mutate.

// access by reference to be able to mutate
for (auto &n : lst) {

n = ...; // e.g. ++n
}

(SCS, UW) CS246 – Module Encapsulation Spring 2023 10 / 15



Built-in Support for the Iterator Pattern
Class Requirements:

Methods begin and end that return Iterators

Iterator Requirements:
Must support prefix operator++, operator!= and unary operator*

Range-based for loop (C++11)

// access by value (makes a copy) of variable n, of type int
for (auto n : lst) {

cout << n << endl; // implicit: n = *it
}

Recall: int &operator*() { return p->data; } gives access to mutate.

// access by reference to be able to mutate
for (auto &n : lst) {

n = ...; // e.g. ++n
}

(SCS, UW) CS246 – Module Encapsulation Spring 2023 10 / 15



More Encapsulation

The ctor for Iterator is in the public section.
⇒ A client of List can directly create Iterator objects violating
encapsulation. For example:

auto it = List::Iterator{nullptr};

We want the client to use begin and end.

Should we make List::Iterator’s ctor private?

Client’s can’t call List::Iterator{...}

But then neither can List

We want to give List access but restrict others.

(SCS, UW) CS246 – Module Encapsulation Spring 2023 11 / 15



More Encapsulation

The ctor for Iterator is in the public section.
⇒ A client of List can directly create Iterator objects violating
encapsulation. For example:

auto it = List::Iterator{nullptr};

We want the client to use begin and end.

Should we make List::Iterator’s ctor private?
Client’s can’t call List::Iterator{...}

But then neither can List

We want to give List access but restrict others.

(SCS, UW) CS246 – Module Encapsulation Spring 2023 11 / 15



More Encapsulation

The ctor for Iterator is in the public section.
⇒ A client of List can directly create Iterator objects violating
encapsulation. For example:

auto it = List::Iterator{nullptr};

We want the client to use begin and end.

Should we make List::Iterator’s ctor private?
Client’s can’t call List::Iterator{...}

But then neither can List

We want to give List access but restrict others.

(SCS, UW) CS246 – Module Encapsulation Spring 2023 11 / 15



Hello Friend!

Make List a friend to Iterator:
As a friend, List has access to all members of Iterator

class List {
...

public:
class Iterator {

Node *p;
explicit Iterator(Node *p); // ctor moved to private

public:
...
friend class List; // Can be placed anywhere in

}; ... // class Iterator
};

(SCS, UW) CS246 – Module Encapsulation Spring 2023 12 / 15



Only have friends you trust!

Clients are now forced to create iterators through begin and end since the
Iterator ctor is private.

List can create iterators as a friend.

Friendships weaken encapsulation - classes should have as few friends as
possible.

(SCS, UW) CS246 – Module Encapsulation Spring 2023 13 / 15



Accessors and Mutators

Often create member functions to provide access to private fields.

class Vec {
int x, y;

public:
...
int getX() const { return x; } // accessor
int setY(int z) { y = z; } // mutator

}

(SCS, UW) CS246 – Module Encapsulation Spring 2023 14 / 15



What about operator«?

Needs access to private fields x and y but can’t be a member function.

Can use accessors, getX and getY, if defined.

If no accessors, make operator« a friend function

class Vec {
...
friend std::ostream &operator<<(std::ostream &out, const Vec &v);

};

ostream &operator<<(std::ostream &out, const Vec &v) {
// friends can access private members
return out << v.x << ’ ’ << v.y;

}

(SCS, UW) CS246 – Module Encapsulation Spring 2023 15 / 15



What about operator«?

Needs access to private fields x and y but can’t be a member function.

Can use accessors, getX and getY, if defined.
If no accessors, make operator« a friend function

class Vec {
...
friend std::ostream &operator<<(std::ostream &out, const Vec &v);

};

ostream &operator<<(std::ostream &out, const Vec &v) {
// friends can access private members
return out << v.x << ’ ’ << v.y;

}

(SCS, UW) CS246 – Module Encapsulation Spring 2023 15 / 15


	Encapsulation
	Encapsulating Linked Lists - Interface
	Encapsulating Linked Lists - Implementation
	Encapsulating Linked Lists
	Iterator Pattern
	Iterator Pattern
	Iterator Pattern - Iterator class (nested in List)
	Iterator Pattern - client usage
	Iterator Pattern - client usage
	Built-in Support for the Iterator Pattern
	More Encapsulation
	Hello Friend!
	Only have friends you trust!
	Accessors and Mutators
	What about operator<<?

