
Casting
* Based on notes by Brad Lushman, used with ... I’ll ask later.

Recall, in C:

Node n;
int *ip = (int *) &n;

A cast forces the Node * to be treated as an int *.

In general, casts should be avoided.
More specifically, in C++, C-style casts should be avoided.

If you must use a C++ style cast, there are 4 kinds:
static_cast

reinterpret_cast

const_cast

dynamic_cast

(SCS, UW) CS246 – Module Casting Spring 2023 1 / 17

Casting
* Based on notes by Brad Lushman, used with ... I’ll ask later.

Recall, in C:

Node n;
int *ip = (int *) &n;

A cast forces the Node * to be treated as an int *.

In general, casts should be avoided.
More specifically, in C++, C-style casts should be avoided.

If you must use a C++ style cast, there are 4 kinds:
static_cast

reinterpret_cast

const_cast

dynamic_cast

(SCS, UW) CS246 – Module Casting Spring 2023 1 / 17

static_cast

"Sensible casts" with well-defined semantics.

// double to int:
double d;
void f(int x);
void f(double x);
f(static_cast<int>(d)); // calls the int version of f

Note: decimal gets truncated. What if we want rounded instead?

// Superclass ptr to subclass ptr
Book *b = new Text{ ... };
Text *t = static_cast<Text *>(b);

You are taking responsibility that b actually points to a Text.

(SCS, UW) CS246 – Module Casting Spring 2023 2 / 17

static_cast

"Sensible casts" with well-defined semantics.

// double to int:
double d;
void f(int x);
void f(double x);
f(static_cast<int>(d)); // calls the int version of f

Note: decimal gets truncated. What if we want rounded instead?

// Superclass ptr to subclass ptr
Book *b = new Text{ ... };
Text *t = static_cast<Text *>(b);

You are taking responsibility that b actually points to a Text.

(SCS, UW) CS246 – Module Casting Spring 2023 2 / 17

reinterpret_cast

Generally unsafe, implementation dependent, "weird" conversions.
Most uses result in undefined behaviour.

Student s;
Turtle *t = reinterpret_cast<Turtle *>(&s);

For when you want a Student to be treated as a Turtle - when is that??
Weird!

(SCS, UW) CS246 – Module Casting Spring 2023 3 / 17

const_cast

For converting between const and non-const.
This is the only C++ cast that can cast away const-ness.

void g(int *p); // Knowing g won’t actually modify *p

void f(const int *p) {
...
g(const_cast<int *>(p));
...

}

(SCS, UW) CS246 – Module Casting Spring 2023 4 / 17

dynamic_cast
Is it safe to convert a Book * to a Text *? Is this safe?

Book *pb = ...;
static_cast<Text *>(pb)->getTopic();

Depends on what pb actually points at!

Better to try the cast first and see if it succeeds or not (a tentative cast).

Book *pb = ...;
Text *pt = dynamic_cast<Text *>(pb);

If the cast works (*pb really is a Text or a subclass of Text),
conversion is successful: pt will point at the object.
If object is not the desired type, pt will be nullptr - you can then
test for this.

if (pt) cout << pt->getTopic();
else cout << "Not a Text";

(SCS, UW) CS246 – Module Casting Spring 2023 5 / 17

dynamic_cast
Is it safe to convert a Book * to a Text *? Is this safe?

Book *pb = ...;
static_cast<Text *>(pb)->getTopic();

Depends on what pb actually points at!

Better to try the cast first and see if it succeeds or not (a tentative cast).

Book *pb = ...;
Text *pt = dynamic_cast<Text *>(pb);

If the cast works (*pb really is a Text or a subclass of Text),
conversion is successful: pt will point at the object.
If object is not the desired type, pt will be nullptr - you can then
test for this.

if (pt) cout << pt->getTopic();
else cout << "Not a Text";

(SCS, UW) CS246 – Module Casting Spring 2023 5 / 17

Casting and Smart Pointers

Previous examples used raw pointers but we can also cast smart pointers
(unique_ptr, shared_ptr):

static_pointer_cast

const_pointer_cast

dynamic_pointer_cast

reinterpret_pointer_cast

Stay within the type: cast shared_ptrs to shared_ptrs.

(SCS, UW) CS246 – Module Casting Spring 2023 6 / 17

Dynamic Casting with References

Yes you can do this too!

Text t{...};
Book &b = t;
Text &t2 = dynamic_cast<Text &>(b);

If b points to a Text, then t2 is a reference to the same Text.

If not, then t2 is nullptr?

No! There is no such thing as a null reference.
Raises an exception: std::bad_cast

Note: dynamic casting only works on classes with at least one virtual
method.

(SCS, UW) CS246 – Module Casting Spring 2023 7 / 17

Dynamic Casting with References

Yes you can do this too!

Text t{...};
Book &b = t;
Text &t2 = dynamic_cast<Text &>(b);

If b points to a Text, then t2 is a reference to the same Text.

If not, then t2 is nullptr?
No! There is no such thing as a null reference.
Raises an exception: std::bad_cast

Note: dynamic casting only works on classes with at least one virtual
method.

(SCS, UW) CS246 – Module Casting Spring 2023 7 / 17

Dynamic Reference Casting and the Polymorphic
Assignment Problem

Dynamic reference casting offers a possible solution to the polymorphic
assignment problem:

Text &Text::operator=(const Book &other) { // virtual
const Text &textother = dynamic_cast<const Text&>(other);
// If other is not a Text then it throws

if (this == &textother) return *this;
Book::operator=(other);
topic = textother.topic;
return *this;

}

Is dynamic casting good style?

(SCS, UW) CS246 – Module Casting Spring 2023 8 / 17

Good style?
You can use dynamic casting to make decisions based on an object’s
runtime type information (RTTI).

void whatIsIt(shared_ptr<Book> b) {
if (dynamic_pointer_cast<Comic>(b))

cout << "Comic";
else if (dynamic_pointer_cast<Text>(b))

cout << "Text";
else if (b)

cout << "Ordinary Book";
else

cout << "Nothing";
}

What would we say about the coupling of this with the Book hierarchy?

Highly coupled ⇒ might indicate a bad design.
Why?

(SCS, UW) CS246 – Module Casting Spring 2023 9 / 17

Good style?
You can use dynamic casting to make decisions based on an object’s
runtime type information (RTTI).

void whatIsIt(shared_ptr<Book> b) {
if (dynamic_pointer_cast<Comic>(b))

cout << "Comic";
else if (dynamic_pointer_cast<Text>(b))

cout << "Text";
else if (b)

cout << "Ordinary Book";
else

cout << "Nothing";
}

What would we say about the coupling of this with the Book hierarchy?
Highly coupled ⇒ might indicate a bad design.
Why?

(SCS, UW) CS246 – Module Casting Spring 2023 9 / 17

Bad Design?

Suppose you want to create a new type of Book, what changes would you
need to make?

must update whatIsIt to add a new clause.
must find and fix all uses of dynamic casting before your code will
work properly

⇒ easy to misuse, error prone
⇒ Better to use virtual methods!

Are all uses of dynamic casting indicative of bad design?

(SCS, UW) CS246 – Module Casting Spring 2023 10 / 17

Bad Design?

Suppose you want to create a new type of Book, what changes would you
need to make?

must update whatIsIt to add a new clause.
must find and fix all uses of dynamic casting before your code will
work properly

⇒ easy to misuse, error prone
⇒ Better to use virtual methods!

Are all uses of dynamic casting indicative of bad design?

(SCS, UW) CS246 – Module Casting Spring 2023 10 / 17

Good or Bad Design?

Are all uses of dynamic casting indicative of bad design?
No. Text::operator= (previous) does not require updates, etc - only
needs to compare with it’s own type (not everything in the hierarchy).
Why?

Text &Text::operator=(const Book &other) { // virtual
const Text &textother = dynamic_cast<const Text&>(other);
// If other is not a Text then it throws

if (this == &textother) return *this;
Book::operator=(other);
topic = textother.topic;
return *this;

}

(SCS, UW) CS246 – Module Casting Spring 2023 11 / 17

Fixing whatIsIt

Try to create an interface function that is uniform across all Book types.

class Book {
...
virtual void identify() { cout << "Book"; }

};
...
void whatIsIt(Book *b) {

if (b) b->identity();
else cout << "Nothing";

}

What if the interface isn’t uniform across all types in the hierarchy?

(SCS, UW) CS246 – Module Casting Spring 2023 12 / 17

Fixing whatIsIt

Try to create an interface function that is uniform across all Book types.

class Book {
...
virtual void identify() { cout << "Book"; }

};
...
void whatIsIt(Book *b) {

if (b) b->identity();
else cout << "Nothing";

}

What if the interface isn’t uniform across all types in the hierarchy?

(SCS, UW) CS246 – Module Casting Spring 2023 12 / 17

Inheritance and virtual methods are well-suited when
there is an unlimited number of specializations of a basic abstraction
each follow the same interface

Adding a new subclass, for a new specialization, is easy.

BUT, what if we have the opposite case:
there is a small number of specializations, all are known in advance
and they are unlikely to change
the different specializations may have very different interfaces

What do we need to do to add a new, unexpected, subclass?
Must rework existing code to accommodate new interface.
⇒ you weren’t expecting to add a new subclass so you should expect
to put in extra effort.

(SCS, UW) CS246 – Module Casting Spring 2023 13 / 17

Inheritance and virtual methods are well-suited when
there is an unlimited number of specializations of a basic abstraction
each follow the same interface

Adding a new subclass, for a new specialization, is easy.

BUT, what if we have the opposite case:
there is a small number of specializations, all are known in advance
and they are unlikely to change
the different specializations may have very different interfaces

What do we need to do to add a new, unexpected, subclass?

Must rework existing code to accommodate new interface.
⇒ you weren’t expecting to add a new subclass so you should expect
to put in extra effort.

(SCS, UW) CS246 – Module Casting Spring 2023 13 / 17

Inheritance and virtual methods are well-suited when
there is an unlimited number of specializations of a basic abstraction
each follow the same interface

Adding a new subclass, for a new specialization, is easy.

BUT, what if we have the opposite case:
there is a small number of specializations, all are known in advance
and they are unlikely to change
the different specializations may have very different interfaces

What do we need to do to add a new, unexpected, subclass?
Must rework existing code to accommodate new interface.
⇒ you weren’t expecting to add a new subclass so you should expect
to put in extra effort.

(SCS, UW) CS246 – Module Casting Spring 2023 13 / 17

Example

class Turtle: public Enemy {
void stealShell();

};

class Bullet: public Enemy {
void deflect();

}

Interfaces are not uniform - a new enemy means a new interface
⇒ unavoidable work.

We could regard the set of enemy classes as fixed and maybe dynamic
casting on enemies is justified.

BUT, in this case, maybe inheritance isn’t the correct abstraction
mechanism to use.

(SCS, UW) CS246 – Module Casting Spring 2023 14 / 17

Example

class Turtle: public Enemy {
void stealShell();

};

class Bullet: public Enemy {
void deflect();

}

Interfaces are not uniform - a new enemy means a new interface
⇒ unavoidable work.

We could regard the set of enemy classes as fixed and maybe dynamic
casting on enemies is justified.

BUT, in this case, maybe inheritance isn’t the correct abstraction
mechanism to use.

(SCS, UW) CS246 – Module Casting Spring 2023 14 / 17

Variant

If you know that an Enemy will only be a Turtle or a Bullet and you
accept that adding new Enemy types will require widespread changes
anyway, then consider:

import <variant>;
// An Enemy is either a Turtle or a Bullet
// old-style: typedef variant<...> Enemy;
using Enemy = variant<Turtle, Bullet>;

// Check what type e is:
if (holds_alternative<Turtle>(e) {

cout << "Turtle"; // True if e is a Turtle
}
else ...

(SCS, UW) CS246 – Module Casting Spring 2023 15 / 17

Variant

// Extracting the value:
try {

Turtle t = get<Turtle>(e);
// C++17 throws on error: bad_variant_access
//use t ...

}
catch (std::bad_variant_access &) {

// It wasn’t a Turtle
}

A variant is like a union but it’s type-safe.
attempting to store as one type and fetch as another will throw an
exception

(SCS, UW) CS246 – Module Casting Spring 2023 16 / 17

Variant
If a variant is left uninitialized, what happens?
std::variant<Turtle, Bullet> e;

The first option of the variant is default-constructed to initialize the
variant.
What if the first option does not have a default constructor?
Compile error! (as we would expect)

Options:
1. Make the first option a type that has a default ctor.
2. Don’t define uninitialized variants.
3. Use std::monostate as the first option. This creates a "dummy"

type that can be used as a default; i.e. can be used to create an
"optional" type.
variant<monostate, T> // = "T or nothing"

Also, std::optional<T> which contains a value or does not contain a
value. Can convert to a Boolean T/F.

(SCS, UW) CS246 – Module Casting Spring 2023 17 / 17

Variant
If a variant is left uninitialized, what happens?
std::variant<Turtle, Bullet> e;

The first option of the variant is default-constructed to initialize the
variant.
What if the first option does not have a default constructor?

Compile error! (as we would expect)

Options:
1. Make the first option a type that has a default ctor.
2. Don’t define uninitialized variants.
3. Use std::monostate as the first option. This creates a "dummy"

type that can be used as a default; i.e. can be used to create an
"optional" type.
variant<monostate, T> // = "T or nothing"

Also, std::optional<T> which contains a value or does not contain a
value. Can convert to a Boolean T/F.

(SCS, UW) CS246 – Module Casting Spring 2023 17 / 17

Variant
If a variant is left uninitialized, what happens?
std::variant<Turtle, Bullet> e;

The first option of the variant is default-constructed to initialize the
variant.
What if the first option does not have a default constructor?
Compile error! (as we would expect)

Options:

1. Make the first option a type that has a default ctor.
2. Don’t define uninitialized variants.
3. Use std::monostate as the first option. This creates a "dummy"

type that can be used as a default; i.e. can be used to create an
"optional" type.
variant<monostate, T> // = "T or nothing"

Also, std::optional<T> which contains a value or does not contain a
value. Can convert to a Boolean T/F.

(SCS, UW) CS246 – Module Casting Spring 2023 17 / 17

Variant
If a variant is left uninitialized, what happens?
std::variant<Turtle, Bullet> e;

The first option of the variant is default-constructed to initialize the
variant.
What if the first option does not have a default constructor?
Compile error! (as we would expect)

Options:
1. Make the first option a type that has a default ctor.
2. Don’t define uninitialized variants.
3. Use std::monostate as the first option. This creates a "dummy"

type that can be used as a default; i.e. can be used to create an
"optional" type.
variant<monostate, T> // = "T or nothing"

Also, std::optional<T> which contains a value or does not contain a
value. Can convert to a Boolean T/F.

(SCS, UW) CS246 – Module Casting Spring 2023 17 / 17

	Casting
	static_cast
	reinterpret_cast
	const_cast
	dynamic_cast
	Casting and Smart Pointers
	Dynamic Casting with References
	Dynamic Reference Casting and the Polymorphic Assignment Problem
	Good style?
	Bad Design?
	Good or Bad Design?
	Fixing whatIsIt
	
	Example
	Variant
	Variant
	Variant

