Context-Free Grammars (CFG)

Formally, a CFG G is a 4-tupple $G=(\Sigma,N,P,S)$

- Σ non-empty, finite alphabet of *terminal* symbols
- N non-empty, finite set of *non-terminals* (often also called *variables*)
- P a finite set of production rules of the form:

$$A \to \beta$$
 where $A \in N$, $\beta \in (N \cup \Sigma)^*$

• S - a start non-terminal, $S \in {\cal N}$

We frequently use $(N\cup\Sigma)$, and denote it as V for "vocabulary"; e.g. $V^*=(N\cup\Sigma)^*$.

Notation

Shortform: Multiple rules with the same *lefthand side* (LHS), can be written on a single line with the *righthand side*s (RHS) separated by | (meaning OR).

 $S \to \epsilon$ $S \to (S)$ $S \to SS$

Shortform: $S \to \epsilon \mid (S) \mid SS$

Conventions

We often follow the following conventions:

- Early lowercase letters: a, b, c, \ldots are symbols from Σ
- Late lowercase letters: \ldots, w, x, y, z are words from Σ^*
- Uppercase letters: A, B, \ldots, S, \ldots are non-terminals from N
- S is the starting non-terminal
- Lowercase Greek letters: $\alpha, \beta, \gamma, \ldots$ are elements of V^* used in the RHS of production rules which may contain both terminals and non-terminals

Derivations

The application of production rules is called a *derivation*; i.e. from some initial form, we apply a production rule to obtain the next form. The symbol \Rightarrow means "derives".

- $\alpha \Rightarrow \beta$ means β can be derived from α by the application of one production rule
- $\alpha \Rightarrow^k \beta$ means β can be derived from α by the application of k production rules
- $\alpha \Rightarrow^* \beta$ means β can be derived from α by the application of 0 or more production rules

Example: $\alpha \Rightarrow^k \beta$ means $\alpha = \delta_0 \Rightarrow \delta_1 \Rightarrow \ldots \Rightarrow \delta_k = \beta$

Intermediate Forms

We typically start from S and apply production rules until a word w of only terminals is derived. The intermediate strings, however, may containing both terminals and non-terminals.

i.e. $S \Rightarrow^* w$ where $S \in N$ and $w \in \Sigma^*$

Intermediate steps may have the form:

 $\alpha A\beta \Rightarrow \alpha \gamma \beta$ if there is a production $A \to \gamma$ in P

$$\bullet \ \alpha,\beta,\gamma \in V^* = (N\cup\Sigma)^* \text{ and } A \in N$$

• RHS is derivable from LHS in one step

Know your notation: do not confuse \Rightarrow with \rightarrow .

Language of a CFG ${\cal G}$

The language of CFG G is the set of strings (terminals only) that we can be derived from the starting non-terminal S, i.e. $L(G) = \{ w \in \Sigma^* \mid S \Rightarrow^* w \}.$

A language L is context-free if L = L(G) for some CFG G.

The language $L = \{ \text{strings of balanced parentheses} \}$ is context-free:

- $\bullet \ \operatorname{CFG} G \colon S \to \epsilon \mid (S) \mid SS$
- L = L(G)