Languages of NFAs

Are NFAs more powerful than DFAs; i.e. is there some NFA M, where there is no DFA that accepts L(M)?

- Every DFA is an NFA with only a single choice of transition at each state.
- Every NFA can be converted to a DFA that accepts exactly the same language.
- Class of languages of NFAs \equiv Class of languages of DFAs \equiv Regular Languages.
- \Rightarrow NFAs accept exactly the class of Regular languages.

ϵ -NFAs

An ϵ -NFA extends NFAs by also allowing a change of state on ϵ , the empty string; i.e. a change of state by ϵ -transition does not consume an alphabet symbol.

More complex? More powerful? More paths to follow? **Note**: ϵ is not an alphabet symbol; i.e. $\epsilon \notin \Sigma$.

Simulating an ϵ -NFAs

Let S be a subset of states of an NFA. The ϵ -closure(S) is the set of all states reachable from a state in S by 0 or more ϵ -transitions.

Convert ϵ -NFA to a DFA

We use the same technique as NFA to DFA, Subset Construction:

- Same basic idea but must consider the *ε*-closure of sets of states.
- Start with the ε-closure of the start state this subset of states is the label for the start state of the DFA.

Note: This conversion method could be automated (implement it).

 \Rightarrow Class of languages of ϵ -NFAs \equiv Regular languages.

Scanning

Is C a regular language?

What do we use to build C programs?

- C keywords
- identifiers
- literals
- operators
- comments
- punctuation

The above are all regular languages, so Union is also regular.

The language $L = \{ Valid C tokens \}$ is regular.

 LL^* is language of non-empty sequences of C tokens.

Unique Decomposition

Consider an ϵ -NFA for valid C identifiers:

Given input w = abcd is there only one decomposition of $w = w_1, \ldots, w_n$? When can we take the ϵ -transition?

Unique Decomposition

Consider an ϵ -NFA for valid C identifiers:

Given input w = abcd is there only one decomposition of $w = w_1, \ldots, w_n$? When can we take the ϵ -transition?

No! Input could be decomposed into 1, 2, 3 or 4 tokens! When should we use the ϵ -transition?

Unique Decomposition

Consider an ϵ -NFA for valid C identifiers:

Given input w = abcd is there only one decomposition of $w = w_1, \ldots, w_n$? When can we take the ϵ -transition?

No! Input could be decomposed into 1, 2, 3 or 4 tokens! When should we use the ϵ -transition? **Longest possible token** To remove decomposition ambiguity, we could decide to only take the ϵ -transition (emit token) when there is no other choice. This emits the longest possible token at iteration.

Given $L = \{aa, aaa\}$ and input string w = aaaa what happens?

To remove decomposition ambiguity, we could decide to only take the ϵ -transition (emit token) when there is no other choice. This emits the longest possible token at iteration.

Given $L = \{aa, aaa\}$ and input string w = aaaa what happens?

Emits token: aaa, then crash (ERROR).

But emitting tokens: aa,aa would have been a valid decomposition.

What should we do?

Maximal Munch Algorithm

- Run DFA (without *ϵ*-transitions) until no non-error transitions available.
- If in an accepting state, emit token found.
 Else *backup* DFA to most recently seen accepting state, emit token, resume from here.
- ϵ -transition back to start state.

Implementation: will need a variable to track "most recent accepting state".

Simplified Maximal Munch Algorithm

Same as Maximal Munch except: if NOT in accepting state when no non-error transitions available, simply crash (ERROR) - no backtracking.

- Run DFA (without *\epsilon*-transitions) until no non-error transitions available.
- If in an accepting state, emit token found, ϵ -transition back to start state.

Else ERROR

Exercise: Give an example where MM finds a valid decomposition but Simplified MM gives ERROR.