
Formal Languages
Definitions

• Alphabet - non-empty finite set of symbols, denoted Σ.

• String (or word) - finite sequence of symbols from Σ.

• Language - set of strings.

String

• Denote the length of a string w by |w|.

• Empty string is denoted by ε, |ε| = 0, |εεε| = 0.

Note: ε is not a symbol in Σ.
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Be mindful of notation - understand the difference between a

symbol, a string and a language (set).

For example:

ε is the empty string.

Given Σ = {a}, is a = εaε?
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Be mindful of notation - understand the difference between a

symbol, a string and a language (set).

For example:

ε is the empty string.

Given Σ = {a}, is a = εaε? Yes

{} or ∅ is the empty language.

What about {ε}?
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Be mindful of notation - understand the difference between a

symbol, a string and a language (set).

For example:

ε is the empty string.

Given Σ = {a}, is a = εaε? Yes

{} or ∅ is the empty language.

What about {ε}?
A singleton set. Language with 1 string - only contains ε.
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The alphabet will depend on the domain you are working in.

• Σ = {a, b, c, . . . , z}, L = {English words}

• Σ = {ASCII characters}, L = {Valid Assembly programs}

• Σ = {ASCII characters}, L = {Valid C programs}

• Σ = {0, 1}, L = {Valid ML programs}

• Σ = {a}, L = {Set of strings where # of a’s is divisible by 3}

• Σ = {a, b, c}, L = {Palindromes over a, b, c}

Problem: Given a string, how to recognize if it belongs to the

specified language.
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Recognition

The difficulty of determining if a string belongs to a specified

language depends on the complexity of the language.

• {English words} - Easy

• {Valid Assembly programs} - Still Easy

• {Valid C programs} - Harder

• {Valid C programs that always halt} - Impossible
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Classes of Languages

The difficulty of recognition defines a hierarchy of classes of

languages.

• Finite (easy)

• Regular

• Context-free (harder)

• Context-sensitive

• Recursive (hard)

• Recursively Enumerable

• etc (impossible)
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Methods of Recognition
How can we determine if a given string belongs to a language?

• Write a program (based on the language) to check.

• Other - finite state machines, Turing machines, etc

For example: Given language L = {bat, bag, bit}.

We could write a program to check if a given input string matches

one of the words within the language.
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if 1st char is 'b' then

if next char is 'a' then

if next char is 't' then

if no more input then

Accept

else

Reject

else if next char is 'g' then

if no more input then

Accept

else

Reject

if next char is 'i' then

...
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Visualization
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Extremely Important Features of Diagram

• Circles represent states - these represent the state of the

program; i.e. the progress we have made in recognizing a valid

pattern. recognized so far.

• An arrow into the start state denotes where to begin.

• Transition arrows from state to state have a single symbol.

• States that accept are double circled.

Note: we could extend this diagram for any finite language.

Remember: Our problem is to recognize a valid programs - most

programming languges have an infinite number of valid programs.
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Regular Languages -Building Blocks
• Finite Languages

• Union: L1 ∪ L2 = {x : x ∈ L1 or x ∈ L2}

• Concatenation: L1 · L2 = L1L2 = {xy : x ∈ L1, y ∈ L2}

• Kleene star L∗ = {ε} ∪ {xy : x ∈ L∗, y ∈ L} =
∞⋃

n=0

Ln

where

Ln =

{ε} if n = 0

LLn−1 otherwise

Equivalently, L∗ is the set of all strings consisting of 0 or more

occurrences of strings from L concatenated together.
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Regular Expressions

Regular Expression Set Notation Description

∅ {} Empty Language

ε {ε} Language containing only ε

a {a} Singleton language of 1 string

E1 | E2 L1 ∪ L2 Alternation

E1 · E2 L1L2 Concatenation

E∗ L∗ Repetition

Precedence:

* before ·, e.g. aa∗ ≡ a(a∗)

· before |, e.g. aa | b ≡ (aa) | b
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Deterministic Finite Automata (DFA)
Formally a DFA M is a 5-tupple M = (Σ, Q, q0, A, δ)

• Σ - non-empty, finite alphabet

• Q - non-empty, finite set of states

• q0 - start state

• A ⊆ Q - set of accepting states

• δ : (Q× Σ)→ Q transition function

From a given state, on a given alphabet symbol transition to next

state - consumes a single symbol.
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Extended Transition Function
Can extend δ to consume a word (instead of a single symbol) by

the following recursive definition:

Base Case: δ∗(q, ε) = q

Recursive Case: δ∗(q, cw) = δ∗(δ(q, c), w) where

c ∈ Σ, w ∈ Σ∗

Acceptance: DFA M accepts a word w if δ∗(q0, w) ∈ A; i.e.

accept if starting at q0 and following δ for each symbol of w, in turn,

ends in a state in A.

The language (set) of M is all words accepted by M , denoted

L(M).
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