
Formal Languages
Definitions

• Alphabet - non-empty finite set of symbols, denoted Σ.

• String (or word) - finite sequence of symbols from Σ.

• Language - set of strings.

String

• Denote the length of a string w by |w|.

• Empty string is denoted by ε, |ε| = 0, |εεε| = 0.

Note: ε is not a symbol in Σ.

CS 241 Spring 2019 06: Formal Languages 1

Be mindful of notation - understand the difference between a

symbol, a string and a language (set).

For example:

ε is the empty string.

Given Σ = {a}, is a = εaε?

CS 241 Spring 2019 06: Formal Languages 2

Be mindful of notation - understand the difference between a

symbol, a string and a language (set).

For example:

ε is the empty string.

Given Σ = {a}, is a = εaε? Yes

{} or ∅ is the empty language.

What about {ε}?

CS 241 Spring 2019 06: Formal Languages 3

Be mindful of notation - understand the difference between a

symbol, a string and a language (set).

For example:

ε is the empty string.

Given Σ = {a}, is a = εaε? Yes

{} or ∅ is the empty language.

What about {ε}?
A singleton set. Language with 1 string - only contains ε.

CS 241 Spring 2019 06: Formal Languages 4

The alphabet will depend on the domain you are working in.

• Σ = {a, b, c, . . . , z}, L = {English words}

• Σ = {ASCII characters}, L = {Valid Assembly programs}

• Σ = {ASCII characters}, L = {Valid C programs}

• Σ = {0, 1}, L = {Valid ML programs}

• Σ = {a}, L = {Set of strings where # of a’s is divisible by 3}

• Σ = {a, b, c}, L = {Palindromes over a, b, c}

Problem: Given a string, how to recognize if it belongs to the

specified language.

CS 241 Spring 2019 06: Formal Languages 5

Recognition

The difficulty of determining if a string belongs to a specified

language depends on the complexity of the language.

• {English words} - Easy

• {Valid Assembly programs} - Still Easy

• {Valid C programs} - Harder

• {Valid C programs that always halt} - Impossible

CS 241 Spring 2019 06: Formal Languages 6

Classes of Languages

The difficulty of recognition defines a hierarchy of classes of

languages.

• Finite (easy)

• Regular

• Context-free (harder)

• Context-sensitive

• Recursive (hard)

• Recursively Enumerable

• etc (impossible)

CS 241 Spring 2019 06: Formal Languages 7

Methods of Recognition
How can we determine if a given string belongs to a language?

• Write a program (based on the language) to check.

• Other - finite state machines, Turing machines, etc

For example: Given language L = {bat, bag, bit}.

We could write a program to check if a given input string matches

one of the words within the language.

CS 241 Spring 2019 06: Formal Languages 8

if 1st char is 'b' then

if next char is 'a' then

if next char is 't' then

if no more input then

Accept

else

Reject

else if next char is 'g' then

if no more input then

Accept

else

Reject

if next char is 'i' then

...

CS 241 Spring 2019 06: Formal Languages 9

Visualization

start seen b

seen

ba

seen

bi

seen

bag

seen

bat

seen

bit

b

a

i

g

t

t

CS 241 Spring 2019 06: Formal Languages 10

Extremely Important Features of Diagram

• Circles represent states - these represent the state of the

program; i.e. the progress we have made in recognizing a valid

pattern. recognized so far.

• An arrow into the start state denotes where to begin.

• Transition arrows from state to state have a single symbol.

• States that accept are double circled.

Note: we could extend this diagram for any finite language.

Remember: Our problem is to recognize a valid programs - most

programming languges have an infinite number of valid programs.

CS 241 Spring 2019 06: Formal Languages 11

Regular Languages -Building Blocks
• Finite Languages

• Union: L1 ∪ L2 = {x : x ∈ L1 or x ∈ L2}

• Concatenation: L1 · L2 = L1L2 = {xy : x ∈ L1, y ∈ L2}

• Kleene star L∗ = {ε} ∪ {xy : x ∈ L∗, y ∈ L} =
∞⋃

n=0

Ln

where

Ln =

{ε} if n = 0

LLn−1 otherwise

Equivalently, L∗ is the set of all strings consisting of 0 or more

occurrences of strings from L concatenated together.

CS 241 Spring 2019 06: Formal Languages 12

Regular Expressions

Regular Expression Set Notation Description

∅ {} Empty Language

ε {ε} Language containing only ε

a {a} Singleton language of 1 string

E1 | E2 L1 ∪ L2 Alternation

E1 · E2 L1L2 Concatenation

E∗ L∗ Repetition

Precedence:

* before ·, e.g. aa∗ ≡ a(a∗)

· before |, e.g. aa | b ≡ (aa) | b

CS 241 Spring 2019 06: Formal Languages 13

Deterministic Finite Automata (DFA)
Formally a DFA M is a 5-tupple M = (Σ, Q, q0, A, δ)

• Σ - non-empty, finite alphabet

• Q - non-empty, finite set of states

• q0 - start state

• A ⊆ Q - set of accepting states

• δ : (Q× Σ)→ Q transition function

From a given state, on a given alphabet symbol transition to next

state - consumes a single symbol.

CS 241 Spring 2019 06: Formal Languages 14

Extended Transition Function
Can extend δ to consume a word (instead of a single symbol) by

the following recursive definition:

Base Case: δ∗(q, ε) = q

Recursive Case: δ∗(q, cw) = δ∗(δ(q, c), w) where

c ∈ Σ, w ∈ Σ∗

Acceptance: DFA M accepts a word w if δ∗(q0, w) ∈ A; i.e.

accept if starting at q0 and following δ for each symbol of w, in turn,

ends in a state in A.

The language (set) of M is all words accepted by M , denoted

L(M).

CS 241 Spring 2019 06: Formal Languages 15

