The Assembler

Goal: Automate the process of translating ASM to ML.
Input: Assembly source code

Output: Machine code

Translation has 2 phases:
1. Analysis: Understand the meaning of source string

2. Synthesis: Output the equivalent target string

CS 241 Spring 2019 05: The Assembler

Assembly Translation

Read the input one ASCII char at a time; i.e. as a stream of char.

The first step is to group characters into meaningful tokens:

e labels, register #, hex #, .word, etc
e Note: This is done for you in asm. rkt and asm. cc

CS 241 Spring 2019 05: The Assembler

Assembly Translation

Read the input one ASCII char at a time; i.e. as a stream of char.

The first step is to group characters into meaningful tokens:

e labels, register #, hex #, .word, etc
e Note: This is done for you in asm. rkt and asm. cc

Your job:
1. Analysis: Check sequence of tokens is a valid program
2. Synthesis: Output equivalent machine code

Focus on checking if the sequence of tokens is valid; anything

else, output an error message containing the word ERROR to

stderr.

CS 241 Spring 2019 05: The Assembler

Assembler Challenges

Most of the process is straightforward since 1 assembly

Instruction translates to exactly 1 machine language instruction.

Challenge (the extra things your Assembler does):
e Comments and whitespace are simply discarded.

e |abels are used to compute memory addresses for jumps and

branch offsets.

Remember labels, comments, whitespace are there to help

programmers. MIPS machine code is simply a sequence of

32-bit binary instructions (no comments, whitespace, labels).

CS 241 Spring 2019 05: The Assembler 4

Assembler Challenges - Labels

We want to read 1 assembly instruction and directly output its

encoded machine instruction.

How to assemble:

beq $0, $1, label

label: add $22, $10, $31

Problem:

CS 241 Spring 2019 05: The Assembler

Assembler Challenges - Labels

We want to read 1 assembly instruction and directly output its

encoded machine instruction.

How to assemble:

beq $0, $1, label

label: add $22, $10, $31

Problem: To encode beq we need the memory address of label,

but we haven’t encountered this label yet! Fix?

CS 241 Spring 2019 05: The Assembler 6

2-Pass Assembler

Pass 1:
e (roup tokens into instructions, verifying instructions are valid.
e Keep track of the memory address (starting at 0x0) each

instruction will be given when loaded into memory.
e Build a symbol table for (label, address) pairs (use map).
e Note: multiple labels may have the same address.

CS 241 Spring 2019 05: The Assembler

2-Pass Assembler

Pass 1:
e (roup tokens into instructions, verifying instructions are valid.
e Keep track of the memory address (starting at 9x0) each

instruction will be given when loaded into memory.
e Build a symbol table for (label, address) pairs (use map).
e Note: multiple labels may have the same address.

Pass 2:
e [ranslate each instructions into machine code.
e |f a label is encountered, look up associated address - compute

branch offset if necessary.

Output translated, assembled MIPS to stdout.

CS 241 Spring 2019 05: The Assembler 8

Symbol Table Example

Ox00
0x04
Ox08
Ox0c
0x10

0x14
0x18
Ox1c
0x20
0x24

Recall, offset in bne: (top — PC)/4 = (0x14 — 0x20)/4 = -3

CS 241 Spring 2019

main:

top:

beyond:

lis $2
.word 20
lis $1
.word 2
add $3,

add $3,
sub $2,
bne $2,
jr $31

05: The Assembler

$0,

$3,
$2,
50,

label addr
main 0x00
$0 top 0x14
beyond | 0x24
$2
$1
top

Encoding Instructions into Binary

Translate each assembly instruction into its binary encoding.

Avengers: lis $2
.word Avengers
Assemble!

CS 241 Spring 2019 05: The Assembler 10

Encoding Instructions into Binary

Translate each assembly instruction into its binary encoding.

Avengers: lis $2
.word Avengers
Assemble!

lis $2 = 0x00001014
.word 0x0 = 0x00000000

bne $2, $0, top

CS 241 Spring 2019 05: The Assembler

11

Encoding Instructions into Binary

Translate each assembly instruction into its binary encoding.

Avengers: lis $2
.word Avengers
Assemble!

lis $2 = 0x00001014
.word 0x0 = 0x00000000

bne $2, $0, top = 0x1440fffd

e bne has opcode 000101

2 = 00010

0= 00000
top=-3=1111111111111101 = Oxfffd

CS 241 Spring 2019 05: The Assembler

12

Assemblying the Pieces

Obtain pieces from the sequence of tokens, then assembile!

Assembly: bne $2, $0, -3
Binary:
0001 0100 0100 60001111 1111 1111 1101

—_—— —— —— T (—

6 bits S bits S bits 16 bits
opcode reg S reg t offset

Can we simply print out each piece, token by token?

e printf("000101"); printf("06010"); ...
e printf("0Ox); printf("1"); printf("4"); ...

CS 241 Spring 2019 05: The Assembler

13

Assemblying the Pieces

Obtain pieces from the sequence of tokens, then assembile!

Assembly: bne $2, $0, -3
Binary:

0001 0100 0100 00001111 1111 1111 1101
—_——— T Y —-—

6 bits 5 bits 5 bits 16 bits
opcode reg S reg T offset

Can we simply print out each piece, token by token?

e printf("000101"); printf("00010"); ...
e printf("0x); printf("1"); printf("4"),; ...

NO!

CS 241 Spring 2019 05: The Assembler

14

Assemblying the Pieces

We need to build and store the encoded instruction using 32

bits, then output the result.

What type in C++ can we use that has 32 bits?

CS 241 Spring 2019 05: The Assembler 15

Assemblying the Pieces

We need to build and store the encoded instruction using 32

bits, then output the result.

What type in C4+-+ can we use that has 32 bits? int

How do we put the first piece into place?
The first 6 bits should be 000101 = 5.

CS 241 Spring 2019 05: The Assembler 16

Assemblying the Pieces

We need to build and store the encoded instruction using 32

bits, then output the result.

What type in C++ can we use that has 32 bits? int

How do we put the first piece into place?
The first 6 bits should be 000101 = 5.

Bitwise operators!

How far do we need to shift?
(1nt) 5is 0000 000 OCOO0 OOEO 00O 0000 6000 0101
We want: 0001 0100 0000 0000 0000 O0OOO 0OOO 000606

CS 241 Spring 2019 05: The Assembler 17

To shift into place, need to append 26 zeros = left-shift by 26 bits:

e C++:5 << 26
e Racket: (arithmetic-shift 5 -26)

Move $2, 21 bits left:
o C++:2 << 21
e Racket: (arithmetic-shift 2 -21)

Move $0, 16 bits left:
o C++:0 << 16
e Racket: (arithmetic-shift 0 -16)

Result so far is: 0x14400000

CS 241 Spring 2019 05: The Assembler

18

Negative offsets are tricky.

We currently have: 0x14400000 from the first 3 pieces
and ultimately want: 0x1440fffd

How do put the last piece into place?

(int)-3is 1111 1111 1111 1111 1111 1111 1111 1101
Or, in 32-bit hexadecimal: Oxfffffffd

CS 241 Spring 2019 05: The Assembler 19

Negative offsets are tricky.

We currently have: 0x14400000 from the first 3 pieces
and ultimately want: 0x1440fffd

How do put the last piece into place?

(int)-3is 1111 1111 1111 1111 1111 1111 1111 1101
Or, in 32-bit hexadecimal: Oxfffffffd

Only want last 16 bits = bitwise AND with Ox0000ffff:
o OxTfffffffd AND Ox0000ffff = Ox0000fffd

e C++: -3 & Oxffff
e Racket: (bitwise-and -3 #xffff)

CS 241 Spring 2019 05: The Assembler 20

Final Assembly and Output

As a single statement, bitwise OR all the pieces:
int instr = (5 << 26) | (2 << 21) | (0 << 16)
(-3 & OxTfff);

(bitwlise-or (arithmetic-shift 5 -26)
(bitwise-and -3 \#xffff))

Final value of instr is 339804157 (in decimal).

Output: cout << instr?

CS 241 Spring 2019 05: The Assembler

21

Final Assembly and Output

As a single statement, bitwise OR all the pieces:
int instr = (5 << 26) | (2 << 21) | (0 << 16)
(-3 & OxTfff);

(bitwlise-or (arithmetic-shift 5 -26)
(bitwise-and -3 \#xffff))

Final value of instr is 339804157 (in decimal).

Output: cout << instr?
No! This prints 339804157 - 9 ASCII characters.

We need to output 4 bytes!

CS 241 Spring 2019 05: The Assembler

22

What gets Output?

What does the following print?
char c = 97;
int x = 97;
cout << X << (C;

CS 241 Spring 2019 05: The Assembler 23

What gets Output?

What does the following print?

char c = 97,

int x = 97;

cout << X << C;
= 97a

Note: x printed 2 ASCII characters and c printed 1.
Based on the type, C++ displays the format you expect to see.
Although we see ‘a’ on the screen, we know the 1-byte ASCI|

value was output.

CS 241 Spring 2019 05: The Assembler

24

Output Byte by Byte

int i1nstr = 339804157; is the 4 bytes:
000101000100600001111111111111101
(U - _/ \\ - JA/_/\ =

-~

1st byte 2nd byte 3rd byte 4th byte

We want to print the ASCII char for each byte. When printed, it may
look strange, i.e. the correct output may look like garbage!

e ASCII code 20 = [Device Control 4]
e ASCIl code 64 = @

e ASCII code 255 = 7?77

e ASCII code 253 = 777

Some characters may also not visibly print anything (ASCII 7)!

CS 241 Spring 2019 05: The Assembler 25

Output Byte by Byte in C++-

Output the 1nt byte by byte using a char.

int instr = 339804157,
char ¢ = 1nstr >> 24;
cout << ¢;

C = 1nstr >> 16;

cout << ¢;

c = instr >> 8;

cout << ¢;

C = 1nstr;

cout << ¢;

CS 241 Spring 2019 05: The Assembler 26

