
The Assembler

Goal: Automate the process of translating ASM to ML.

Input: Assembly source code

Output: Machine code

Translation has 2 phases:

1. Analysis: Understand the meaning of source string

2. Synthesis: Output the equivalent target string

CS 241 Spring 2019 05: The Assembler 1

Assembly Translation
Read the input one ASCII char at a time; i.e. as a stream of char.

The first step is to group characters into meaningful tokens:

• labels, register #, hex #, .word, etc

• Note: This is done for you in asm.rkt and asm.cc

CS 241 Spring 2019 05: The Assembler 2

Assembly Translation
Read the input one ASCII char at a time; i.e. as a stream of char.

The first step is to group characters into meaningful tokens:

• labels, register #, hex #, .word, etc

• Note: This is done for you in asm.rkt and asm.cc

Your job:

1. Analysis: Check sequence of tokens is a valid program

2. Synthesis: Output equivalent machine code

Focus on checking if the sequence of tokens is valid; anything

else, output an error message containing the word ERROR to

stderr.

CS 241 Spring 2019 05: The Assembler 3

Assembler Challenges

Most of the process is straightforward since 1 assembly

instruction translates to exactly 1 machine language instruction.

Challenge (the extra things your Assembler does):

• Comments and whitespace are simply discarded.

• Labels are used to compute memory addresses for jumps and

branch offsets.

Remember labels, comments, whitespace are there to help

programmers. MIPS machine code is simply a sequence of

32-bit binary instructions (no comments, whitespace, labels).

CS 241 Spring 2019 05: The Assembler 4

Assembler Challenges - Labels
We want to read 1 assembly instruction and directly output its

encoded machine instruction.

How to assemble:

beq $0, $1, label

...

label: add $22, $10, $31

Problem:

CS 241 Spring 2019 05: The Assembler 5

Assembler Challenges - Labels
We want to read 1 assembly instruction and directly output its

encoded machine instruction.

How to assemble:

beq $0, $1, label

...

label: add $22, $10, $31

Problem: To encode beq we need the memory address of label,

but we haven’t encountered this label yet! Fix?

CS 241 Spring 2019 05: The Assembler 6

2-Pass Assembler
Pass 1:

• Group tokens into instructions, verifying instructions are valid.

• Keep track of the memory address (starting at 0x0) each

instruction will be given when loaded into memory.

• Build a symbol table for (label, address) pairs (use map).

• Note: multiple labels may have the same address.

CS 241 Spring 2019 05: The Assembler 7

2-Pass Assembler
Pass 1:
• Group tokens into instructions, verifying instructions are valid.

• Keep track of the memory address (starting at 0x0) each

instruction will be given when loaded into memory.

• Build a symbol table for (label, address) pairs (use map).

• Note: multiple labels may have the same address.

Pass 2:
• Translate each instructions into machine code.

• If a label is encountered, look up associated address - compute

branch offset if necessary.

Output translated, assembled MIPS to stdout.

CS 241 Spring 2019 05: The Assembler 8

Symbol Table Example
0x00

0x04

0x08

0x0c

0x10

0x14

0x18

0x1c

0x20

0x24

main: lis $2

.word 20

lis $1

.word 2

add $3, $0, $0

top:

add $3, $3, $2

sub $2, $2, $1

bne $2, $0, top

jr $31

beyond:

label addr

main 0x00

top 0x14

beyond 0x24

Recall, offset in bne: (top− PC)/4 = (0x14− 0x20)/4 = -3

CS 241 Spring 2019 05: The Assembler 9

Encoding Instructions into Binary

Translate each assembly instruction into its binary encoding.

Avengers: lis $2

.word Avengers
Assemble!

CS 241 Spring 2019 05: The Assembler 10

Encoding Instructions into Binary

Translate each assembly instruction into its binary encoding.

Avengers: lis $2

.word Avengers
Assemble!

lis $2⇒ 0x00001014

.word 0x0⇒ 0x00000000

bne $2, $0, top

CS 241 Spring 2019 05: The Assembler 11

Encoding Instructions into Binary

Translate each assembly instruction into its binary encoding.

Avengers: lis $2

.word Avengers
Assemble!

lis $2⇒ 0x00001014

.word 0x0⇒ 0x00000000

bne $2, $0, top⇒ 0x1440fffd
• bne has opcode 000101
• 2⇒ 00010
• 0⇒ 00000
• top= -3⇒ 1111111111111101= 0xfffd

CS 241 Spring 2019 05: The Assembler 12

Assemblying the Pieces

Obtain pieces from the sequence of tokens, then assemble!

Assembly: bne $2, $0, -3

Binary:

0001 01︸ ︷︷ ︸
6 bits

opcode

00 010︸ ︷︷ ︸
5 bits
reg s

0 0000︸ ︷︷ ︸
5 bits
reg t

1111 1111 1111 1101︸ ︷︷ ︸
16 bits
offset

Can we simply print out each piece, token by token?

• printf("000101"); printf("00010"); . . .

• printf("0x); printf("1"); printf("4"); . . .

CS 241 Spring 2019 05: The Assembler 13

Assemblying the Pieces

Obtain pieces from the sequence of tokens, then assemble!

Assembly: bne $2, $0, -3

Binary:

0001 01︸ ︷︷ ︸
6 bits

opcode

00 010︸ ︷︷ ︸
5 bits
reg s

0 0000︸ ︷︷ ︸
5 bits
reg t

1111 1111 1111 1101︸ ︷︷ ︸
16 bits
offset

Can we simply print out each piece, token by token?

• printf("000101"); printf("00010"); . . .

• printf("0x); printf("1"); printf("4"); . . .

NO!

CS 241 Spring 2019 05: The Assembler 14

Assemblying the Pieces

We need to build and store the encoded instruction using 32

bits, then output the result.

What type in C++ can we use that has 32 bits?

CS 241 Spring 2019 05: The Assembler 15

Assemblying the Pieces

We need to build and store the encoded instruction using 32

bits, then output the result.

What type in C++ can we use that has 32 bits? int

How do we put the first piece into place?

The first 6 bits should be 000101= 5.

CS 241 Spring 2019 05: The Assembler 16

Assemblying the Pieces

We need to build and store the encoded instruction using 32

bits, then output the result.

What type in C++ can we use that has 32 bits? int

How do we put the first piece into place?

The first 6 bits should be 000101= 5.

Bitwise operators!

How far do we need to shift?

(int) 5 is 0000 0000 0000 0000 0000 0000 0000 0101

We want: 0001 0100 0000 0000 0000 0000 0000 0000

CS 241 Spring 2019 05: The Assembler 17

To shift into place, need to append 26 zeros⇒ left-shift by 26 bits:

• C++: 5 << 26

• Racket: (arithmetic-shift 5 -26)

Move $2, 21 bits left:

• C++: 2 << 21

• Racket: (arithmetic-shift 2 -21)

Move $0, 16 bits left:

• C++: 0 << 16

• Racket: (arithmetic-shift 0 -16)

Result so far is: 0x14400000

CS 241 Spring 2019 05: The Assembler 18

Negative offsets are tricky.

We currently have: 0x14400000 from the first 3 pieces

and ultimately want: 0x1440fffd

How do put the last piece into place?

(int) -3 is 1111 1111 1111 1111 1111 1111 1111 1101

Or, in 32-bit hexadecimal: 0xfffffffd

CS 241 Spring 2019 05: The Assembler 19

Negative offsets are tricky.

We currently have: 0x14400000 from the first 3 pieces

and ultimately want: 0x1440fffd

How do put the last piece into place?

(int) -3 is 1111 1111 1111 1111 1111 1111 1111 1101

Or, in 32-bit hexadecimal: 0xfffffffd

Only want last 16 bits⇒ bitwise AND with 0x0000ffff:

• 0xfffffffd AND 0x0000ffff⇒ 0x0000fffd

• C++: -3 & 0xffff

• Racket: (bitwise-and -3 #xffff)

CS 241 Spring 2019 05: The Assembler 20

Final Assembly and Output
As a single statement, bitwise OR all the pieces:
int instr = (5 << 26) | (2 << 21) | (0 << 16) |

(-3 & 0xffff);

(bitwise-or (arithmetic-shift 5 -26) ...

(bitwise-and -3 \#xffff))

Final value of instr is 339804157 (in decimal).

Output: cout << instr?

CS 241 Spring 2019 05: The Assembler 21

Final Assembly and Output
As a single statement, bitwise OR all the pieces:
int instr = (5 << 26) | (2 << 21) | (0 << 16) |

(-3 & 0xffff);

(bitwise-or (arithmetic-shift 5 -26) ...

(bitwise-and -3 \#xffff))

Final value of instr is 339804157 (in decimal).

Output: cout << instr?

No! This prints 339804157 - 9 ASCII characters.

We need to output 4 bytes!

CS 241 Spring 2019 05: The Assembler 22

What gets Output?
What does the following print?
char c = 97;

int x = 97;

cout << x << c;

CS 241 Spring 2019 05: The Assembler 23

What gets Output?
What does the following print?
char c = 97;

int x = 97;

cout << x << c;

⇒ 97a

Note: x printed 2 ASCII characters and c printed 1.

Based on the type, C++ displays the format you expect to see.

Although we see ‘a’ on the screen, we know the 1-byte ASCII

value was output.

CS 241 Spring 2019 05: The Assembler 24

Output Byte by Byte
int instr = 339804157; is the 4 bytes:

00010100︸ ︷︷ ︸
1st byte

01000000︸ ︷︷ ︸
2nd byte

11111111︸ ︷︷ ︸
3rd byte

11111101︸ ︷︷ ︸
4th byte

We want to print the ASCII char for each byte. When printed, it may

look strange, i.e. the correct output may look like garbage!

• ASCII code 20⇒ [Device Control 4]

• ASCII code 64⇒ @

• ASCII code 255⇒ ???

• ASCII code 253⇒ ???

Some characters may also not visibly print anything (ASCII 7)!

CS 241 Spring 2019 05: The Assembler 25

Output Byte by Byte in C++

Output the int byte by byte using a char.

int instr = 339804157;

char c = instr >> 24;

cout << c;

c = instr >> 16;

cout << c;

c = instr >> 8;

cout << c;

c = instr;

cout << c;

CS 241 Spring 2019 05: The Assembler 26

