
Implementing Procedures in MIPS

By now you should know why programmers use procedures!

Flashback to 1st year:

• Where do you place the code you write for a function?

• What happens when you call a function?

• Where are parameters and local variables stored?

• Where does control go when function returns?

• How do values get returned from a function?

• What’s the difference between a procedure and a function?

CS 241 Spring 2019 04: Even more MIPS 1

Implementing Procedures in MIPS

All those little things you take for granted in a high-level

language, you will need to implement yourself!

Procedures in MIPS are a bit different:

• All procedures share the same set of registers

• Procedures do not return values

Logistics: How to call and return from a procedure?

Problem: How to share registers?

• A caller may have critical data stored in a register that the callee

should not overwrite!

CS 241 Spring 2019 04: Even more MIPS 2

Sharing Registers

Strategy: guarantee that when a procedure ends, the values in

the registers are the same as when the procedure was called.

Where can we save register data?

CS 241 Spring 2019 04: Even more MIPS 3

Sharing Registers

Strategy: guarantee that when a procedure ends, the values in

the registers are the same as when the procedure was called.

Where can we save register data?

• Two places we typically store data is in memory (RAM) or

registers (CPU).

• It would be nice to save everything in registers (fast access, etc)

but space is very limited.

• If we use registers, we may run out.

Where does C/C++ store data related to function calls?

CS 241 Spring 2019 04: Even more MIPS 4

Sharing Registers

Strategy: guarantee that when a procedure ends, the values in

the registers are the same as when the procedure was called.

Where can we save register data?

• Two places we typically store data is in memory (RAM) or

registers (CPU).

• It would be nice to save everything in registers (fast access, etc)

but space is very limited.

• If we use registers, we may run out.

Where does C/C++ store data related to function calls? Call stack

CS 241 Spring 2019 04: Even more MIPS 5

Storing on the Stack
Recall: a loader allocates a block of RAM (larger than program) and

loads our program at the top of the block, then sets the PC← 0.

It also sets $30 to the memory address immediately following the

allocated block.

• Use $30 to store address of the top of stack

• Grow stack from high memory addresses to low

For example: if procedure f calls g and g calls h then

• f stores register data at the bottom of stack

g stores register data above f

h stores register data at top of stack

CS 241 Spring 2019 04: Even more MIPS 6

Strategy: each time a procedure is called, it will save the current

value stored in the registers it wants to use on the stack and

restore the original values when it ends.

• Only need to save registers that the procedure will overwrite. If

in doubt, save everything.

• Remember registers are 32 bits or 4 bytes.

• Remember to increment (decrement) $30 when you push (pop).

• Remember the order you placed items on the stack.

• Careful of “off by 1 errors".

CS 241 Spring 2019 04: Even more MIPS 7

Template for Procedures
Suppose procedure f modifies registers $1 and $2:

f: sw $1, -4($30) ; Push registers f modifies

sw $2, -8($30)

lis $2 ; Decrement stack pointer

.word 8

sub $30, $30, $2

; Body of your procedure goes here

lis $2 ; Increment stack pointer

.word 8

add $30, $30, $2

lw $2, -8($30) ; Pop registers to restore

lw $1, -4($30)

; How do we return?

CS 241 Spring 2019 04: Even more MIPS 8

Calling and Returning
Label f represents the memory address of procedure f.

main:

lis $5

.word f

jr $5

; RETURN HERE

...

f: ...

How do we know the memory address where f returns to?

CS 241 Spring 2019 04: Even more MIPS 9

Returning - jalr
MIPS Reference Sheet: jalr $s

Last instruction: Jump and Link Registers

Copies PC into $31 then jumps to address stored in $s.

I’m suppose to remember something about $31?

CS 241 Spring 2019 04: Even more MIPS 10

Returning - jalr
MIPS Reference Sheet: jalr $s

Last instruction: Jump and Link Registers

Copies PC into $31 then jumps to address stored in $s.

I’m suppose to remember something about $31?

• $31 is special - it stores the memory address (in the loader

program) we jump back to when our program ends.

Who saves $31? Procedure f?

CS 241 Spring 2019 04: Even more MIPS 11

Returning - jalr
MIPS Reference Sheet: jalr $s

Last instruction: Jump and Link Registers

Copies PC into $31 then jumps to address stored in $s.

I’m suppose to remember something about $31?

• $31 is special - it stores the memory address (in the loader

program) we jump back to when our program ends.

Who saves $31? Procedure f?

• We need to save it before we jump to f.

• The caller saves $31 first, then calls the procedure.

CS 241 Spring 2019 04: Even more MIPS 12

main:

lis $5

.word f

sw $31, -4($30) ; Push $31

lis $31

.word -4

add $30, $30, $31

jalr $5 ; Jump to f

lis $31 ; Pop to restore $31

.word 4

add $30, $30, $31

lw $31, -4($30)

jr $31 ; Return to loader

CS 241 Spring 2019 04: Even more MIPS 13

f:

sw $1, -4($30) ; Push registers f modifies

sw $2, -8($30)

lis $2 ; Decrement stack pointer

.word 8

sub $30, $30, $2

; Body of your procedure goes here

lis $2 ; Increment stack pointer

.word 8

add $30, $30, $2

lw $2, -8($30) ; Pop registers to restore

lw $1, -4($30)

jr $31 ; *NEW* Return to caller

CS 241 Spring 2019 04: Even more MIPS 14

Parameters and Result Passing

• Simple approach: use registers (Document!)

• If too many parameters, can use memory (stack)

Example: Procedure sumEvens2ToN

; sumEvens2ToN: adds all even numbers from 2 .. N

; Requires: N is even

; Registers:

; $1 - Temporary work

; $2 - Parameter N

; $3 - Sum to return

Which registers should be saved?

CS 241 Spring 2019 04: Even more MIPS 15

Parameters and Result Passing

• Simple approach: use registers (Document!)

• If too many parameters, can use memory (stack)

Example: Procedure sumEvens2ToN

; sumEvens2ToN: adds all even numbers from 2 .. N

; Requires: N is even

; Registers:

; $1 - Temporary work Must Save This!

; $2 - Parameter N Should Save This!

; $3 - Sum to return Do NOT Save!

Which registers should be saved?

CS 241 Spring 2019 04: Even more MIPS 16

sumEvens2ToN:

sw $1, -4($30) ; Save $1 and $2 on stack

sw $2, -8($30)

lis $1 ; Use Temporary work register

.word 8

sub $30, $30, $1 ; Decrement stack pointer

add $3, $0, $0 ; Initialize sum <- 0

lis $1 ; Use Temporary work register

.word 2

topLoop:

add $3, $3, $2

sub $2, $2, $1

bne $2, $0, top

; ... continued on next slide

CS 241 Spring 2019 04: Even more MIPS 17

lis $1 ; Restore $1 and $2

.word 8

add $30, $30, $1

lw $2, -8($30)

lw $1, -4($30)

jr $31 ; Jump back to caller

CS 241 Spring 2019 04: Even more MIPS 18

Printing to Stdout

Use sw to store a word in address 0xffff000c.

Least significant byte will be printed to stdout.

Example: Write a program that prints "CS\n" followed by newline.

lis $1

.word 0xffff000c

lis $2

.word 67 ; ASCII 'C'

sw $2, 0($1)

lis $2

.word 83 ; ASCII 'S'

sw $2, 0($1)

lis $2

.word 10 ; ASCII '\n'

sw $2, 0($1)

jr $31

CS 241 Spring 2019 04: Even more MIPS 19

Reading from Stdin

Use lw to read a word from address 0xffff0004.

Least significant byte will be read from stdin.

CS 241 Spring 2019 04: Even more MIPS 20

CS 241 Spring 2019 04: Even more MIPS 21

