
Load Immediate and Skip
MIPS Reference Sheet: lis $d

Binary: 0000 0000 0000 0000 dddd d000 0001 0100

Instead of specifying a memory address to load from, lis loads

the next word in memory into the destination register and then

skips to the word after that.

Example:

lis $7

.word 0x7 ; Lucky number 7

To execute lis $7, the .word 0x7 at the current PC is loaded.

Then, PC← PC + 4 to perform the skip.
CS 241 Spring 2019 03: More MIPS 1

Example:

Write a program that adds 27 to 42 and stores the sum in $3.

CS 241 Spring 2019 03: More MIPS 2

Example:

Write a program that adds 27 to 42 and stores the sum in $3.

lis $5 ; load immediate and skip $5 <- 27

.word 27

lis $6 ; load immediate and skip $6 <- 42

.word 42

add $3, $5, $6 ; $3 <- $5 + $6

jr $31 ; PC <- $31 jump to address in $31

When asked to “Write a program ...", you should return, even if

not explicitly asked to do so; i.e. your program should terminate

properly.

CS 241 Spring 2019 03: More MIPS 3

Consider the following program:

Address Assembly Hexadecimal

0x0000 lis $1 0x0000 0814

0x0004 lis $2 0x0000 1014

0x0008 jr $0 0x0000 0008

0x000c jr $31 0x03e0 0008

What value (in decimal) is loaded into register $1?

What value (in decimal) is loaded into register $2?

What does the program do?

CS 241 Spring 2019 03: More MIPS 4

Branching

Two options: Branch on Equal and Branch on Not Equal

Compares contents of two registers; if true, branch; i.e. modify

PC by the given (immediate) offset number of words.

MIPS Reference Sheet: beq $s, $t, i and bne $s, $t, i

Binary: 0001 00ss ssst tttt iiii iiii iiii iiii

• i is an integer offset (unit is number of words)

• PC← PC + i× 4

Recall: PC stores address of next instruction.

What does beq $0, $0, -1 do?

CS 241 Spring 2019 03: More MIPS 5

Set Less Than

Two forms: Set Less Than and Set Less Than Unsigned

Compares contents of two registers (as either two’s complement

or unsigned numbers); sets destination register with result.

MIPS Reference Sheet: slt $d, $s, $t and sltu $d, $s, $t

Binary: 0000 00ss ssst tttt dddd d000 0010 1010

• Sets $d← 1 if $s < $t; otherwise $d← 0

• CS 241 does not have Set Greater Than, Set Equal To, etc.

• With branching, we can implement conditionals, looping, etc.

CS 241 Spring 2019 03: More MIPS 6

Conditional example: Write a program to compute the absolute

value of $1 and store result in $1.

CS 241 Spring 2019 03: More MIPS 7

Conditional example: Write a program to compute the absolute

value of $1 and store result in $1.

slt $2, $1, $0 ; compare $1 < 0, is $1 negative?

beq $2, $0, 1 ; if $1 positive skip next instr

sub $1, $0, $1 ; negate $1: $1 <- 0-$1

jr $31 ; return

Alternative:

slt $2, $0, $1

bne $2, $0, 1

sub $1, $0, $1

jr $31

CS 241 Spring 2019 03: More MIPS 8

Loop example: Write a program that adds all the even numbers from

2 to 20 (inclusive) and stores the sum in register $3.

CS 241 Spring 2019 03: More MIPS 9

Loop example: Write a program that adds all the even numbers from

2 to 20 (inclusive) and stores the sum in register $3.

lis $1

.word 20

add $3, $0, $0

add $3, $3, $1

lis $2

.word 2

sub $1, $1, $2

bne $1, $0, -5 ; loop to add $3, $3, $1

jr $31

CS 241 Spring 2019 03: More MIPS 10

Multiplication and Division
MIPS Reference Sheet: mult $s, $t and div $s, $t

Where is the destination register?

How many bits are needed for the product of two 32-bit numbers?

Hint : consider multiplying (in decimal) 1000× 1000.

CS 241 Spring 2019 03: More MIPS 11

Multiplication and Division
MIPS Reference Sheet: mult $s, $t and div $s, $t

Where is the destination register?

How many bits are needed for the product of two 32-bit numbers?

Hint : consider multiplying (in decimal) 1000× 1000.

• Product could require 64 bits - too big for a single register

• Product stored in special registers: hi:lo← $s*$t

• Division has a quotient (stored in lo) and remainder (hi)

• Also, unsigned versions: multu and divu

CS 241 Spring 2019 03: More MIPS 12

Accessing hi and lo
MIPS Reference Sheet: mfhi $d and mflo $d

Move from hi (or lo) simply copies the contents of hi (or lo)

to a destination register.

Example: Given $1 stores the base address of an array and $2

stores a valid index, write a program that loads the value into $3.

CS 241 Spring 2019 03: More MIPS 13

Accessing hi and lo
MIPS Reference Sheet: mfhi $d and mflo $d

Move from hi (or lo) simply copies the contents of hi (or lo)

to a destination register.

Example: Given $1 stores the base address of an array and $2
stores a valid index, write a program that loads the value into $3.

lis $4

.word 4

mult $2, $4

mflo $4

add $4, $1, $4

lw $3, 0($4)

jr $31

CS 241 Spring 2019 03: More MIPS 14

Example:

Write a program that checks if $2 evenly divides $1.

If true, $3← 1; otherwise $3← 0.

Registers $1 and $2 must remain unchanged.

div $1, $2

mfhi $3

bne $3, $0, ??? ; if remainder != 0 branch

Where do we branch to?

• Maybe we should write the rest of the code and fill this in later.

CS 241 Spring 2019 03: More MIPS 15

div $1, $2

mfhi $3

bne $3, $0, 4 ; if remainder != 0 branch

lis $4 ; case 1: remainder == 0

.word 1 ; set $3 <- 1

add $3, $4, $0

beq $0, $0, 1

add $3, $0, $0 ; case 2: set $3 <- 0

jr $31

CS 241 Spring 2019 03: More MIPS 16

Assembly Language

Assembly language replaces the binary encoding of machine

language instructions with easier to use mnemonics; i.e. its more

English-like code.

• Readability, less chance of errors, etc

• Can make an Assembler to automatically translate ASM to ML

• 1 line of assembly translates to 1 line of machine code

• Has extra features to simplify coding (directives: e.g. .word)

• Allows for comments and extra whitespace (stripped out at

pre-processing)

CS 241 Spring 2019 03: More MIPS 17

Assembly Language Labels

Assemblers allow programmers to label instructions and to use

the labels within the assembly language instruction so

programmers do not have to manually calculate jump addresses

or branch offsets.

Format: label: operation operands

Example: replace i in beq instruction:

; ABS program

slt $2, $1, $0

beq $2, $0, 1

sub $1, $0, $1

jr $31

; Label in beq instr

slt $2, $1, $0

beq $2, $0, foo

sub $1, $0, $1

foo: jr $31

CS 241 Spring 2019 03: More MIPS 18

Revisiting Loops
Loop example: Write a program that adds all the even numbers from

2 to 20 (inclusive) and stores the sum in register $3.

lis $1

.word 20

add $3, $0, $0

add $3, $3, $1

lis $2

.word 2

sub $1, $1, $2

bne $1, $0, -5 ; loop to add $3, $3, $1

jr $31

CS 241 Spring 2019 03: More MIPS 19

Revisiting Loops
Loop example: Write a program that adds all the even numbers from
2 to 20 (inclusive) and stores the sum in register $3.

lis $1

.word 20

add $3, $0, $0

add $3, $3, $1

lis $2

.word 2

sub $1, $1, $2

bne $1, $0, -5 ; loop to add $3, $3, $1

jr $31

Why load value 2 at each iteration of the loop?

CS 241 Spring 2019 03: More MIPS 20

Revisiting Loops
Modifying code might invalidate offsets. As a programmer, we don’t

want to manually update offsets and addresses, etc.

Let the assembler do the work for us!

lis $1

.word 20

lis $2 ; move this out of loop

.word 2

add $3, $0, $0

add $3, $3, $1

sub $1, $1, $2

bne $1, $0, -5 ; This okay?

jr $31

CS 241 Spring 2019 03: More MIPS 21

lis $1

.word 20

lis $2

.word 2

add $3, $0, $0

add $3, $3, $1

sub $1, $1, $2

bne $1, $0, -3

jr $31

lis $1

.word 20

lis $2

.word 2

add $3, $0, $0

top:

add $3, $3, $1

sub $1, $1, $2

bne $1, $0, top

jr $31
top is assigned memory adddress 0x14

Assembler computes:(top− PC)/4 = (0x14− 0x20)/4 = -3 in bne

CS 241 Spring 2019 03: More MIPS 22

Assigning Memory Addresses to Labels

Remember, whitespace, comments and labels are for

programmers to more easily read, write and organize code.

They do not get translated in machine code!

When assigning a memory address to a line label:

• Blank lines are simply stripped out.

• Whitespace after labels is removed.

• Only instructions (and .word) are assigned addresses.

• A label is assigned the memory address of the instruction that

follows it.

CS 241 Spring 2019 03: More MIPS 23

• A label may appear at the end of your code and will be assigned

the memory address of the word after your program.

CS 241 Spring 2019 03: More MIPS 24

