
MIPS Architecture

ALU

Control Unit

CPU

...
R03

R29

R31

R01

R30

R02

PC

IR

32 bits 32 bits

MAR

MDR

hi

lo

...

0028:

001C:

0034:

0000:

0030:

000C:

0014:
0010:

0024:

0004:

002C:

0018:

0008:

0020:

Memory

32 bits

Expect to use Linux in this course!

CS 241 Spring 2019 02: MIPS Architecture 1



What does a data look like in memory?

What does a machine instruction look like in memory?

CS 241 Spring 2019 02: MIPS Architecture 2



What does a data look like in memory?

What does a machine instruction look like in memory?

• Data is stored as binary sequences (1’s and 0’s).

• Machine instructions are also binary sequences.

• Only certain sequences of 1’s and 0’s are valid machine

instructions.

• Machine languages are processor specific.

If both programs and data are stored in memory, how do we tell

them apart?

CS 241 Spring 2019 02: MIPS Architecture 3



What does a data look like in memory?

What does a machine instruction look like in memory?

• Data is stored as binary sequences (1’s and 0’s).

• Machine instructions are also binary sequences.

• Only certain sequences of 1’s and 0’s are valid machine

instructions.

• Machine languages are processor specific.

If both programs and data are stored in memory, how do we tell

them apart?

Recall from last class, by simply looking at the bits, we can’t!

CS 241 Spring 2019 02: MIPS Architecture 4



Basic Architecture

• Computer programs operate on data but are data themselves.

• Both, a program and the data it operates on are stored in the

same memory.

• Fundamentals: Random-access memory (RAM), CPU,

fetch-execute cycle, stored program.

Recall, from CS 135 history, who this architecture is named after?

CS 241 Spring 2019 02: MIPS Architecture 5



Basic Architecture

• Computer programs operate on data but are data themselves.

• Both, a program and the data it operates on are stored in the

same memory.

• Fundamentals: Random-access memory (RAM), CPU,

fetch-execute cycle, stored program.

Recall, from CS 135 history, who this architecture is named after?

Single-memory, stored program architecture is known as von

Neumann architecture after John von Neumann.

Also invented merge sort in 1945.

CS 241 Spring 2019 02: MIPS Architecture 6



CS 241 Simplified MIPS

• Central Processing Unit (CPU)

• Control Unit

– Decodes instructions

– Interacts with other components of CPU to carry them out

• Arithmetic Logic Unit (ALU)

• Memory - lots of different kinds

CS 241 Spring 2019 02: MIPS Architecture 7



Memory

• CPU registers (fast, expensive)

• L1, L2, L3 cache

• RAM (main memory)

• Solid state drive (SSD), harddrive

• Networks, The Cloud (slow, cheap)

We will focus on registers and RAM.

CS 241 Spring 2019 02: MIPS Architecture 8



Registers

A CPU has a very limited number of very fast, but very small

memory storage locations called registers.

Our MIPS architecture has 32 registers, 32 bits in size; one word .

CS 241 Spring 2019 02: MIPS Architecture 9



Registers

A CPU has a very limited number of very fast, but very small

memory storage locations called registers.

Our MIPS architecture has 32 registers, 32 bits in size; one word .

• CPU can only operate on data stored in registers.

• If data is not currently in a register, you must load it from RAM.

• Registers are labelled $0, $1, $2, . . ., $31

• $0 is always 0

• $31 is special, $30 is also special, $29 is sort of special

How many bits are needed to encode a register number in binary?

CS 241 Spring 2019 02: MIPS Architecture 10



32 registers. 32 = 25 ⇒ 5 bits needed to encode a register

number.

CS 241 Spring 2019 02: MIPS Architecture 11



First MIPS Instruction - Add
An example of a MIPS instruction is:

Add contents of registers s and t , store the result in register d .

MIPS Reference Sheet: add $d, $s, $t

Binary: 0000 00ss ssst tttt dddd d000 0010 0000

Example: add $27, $7, $8

CS 241 Spring 2019 02: MIPS Architecture 12



First MIPS Instruction - Add
An example of a MIPS instruction is:

Add contents of registers s and t , store the result in register d .

MIPS Reference Sheet: add $d, $s, $t

Binary: 0000 00ss ssst tttt dddd d000 0010 0000

Example: add $27, $7, $8

• 7 in 5-bit binary is: 00111

• 8 in 5-bit binary is: 01000

• 27 in 5-bit binary is: 11011

Final: 0000 0000 1110 1000 1101 1000 0010 0000

CS 241 Spring 2019 02: MIPS Architecture 13



Conventions

For readability, group binary strings into blocks of 4 bits.

For convenience, use hexadecimal (base 16) instead of binary.

• Digits: 0, 1, . . . , 9, a, b, c, d, e, f

• 1 hexadecimal digit corresponds to 4 binary bits (and vice-versa)

• Denote hexadecimal numbers by starting them with 0x

Binary: 0000 0000 1110 1000 1101 1000 0010 0000

Hexadecimal:

CS 241 Spring 2019 02: MIPS Architecture 14



Conventions

For readability, group binary strings into blocks of 4 bits.

For convenience, use hexadecimal (base 16) instead of binary.

• Digits: 0, 1, . . . , 9, a, b, c, d, e, f

• 1 hexadecimal digit corresponds to 4 binary bits (and vice-versa)

• Denote hexadecimal numbers by starting them with 0x

Binary: 0000 0000 1110 1000 1101 1000 0010 0000

Hexadecimal: 0x00e8d820

CS 241 Spring 2019 02: MIPS Architecture 15



Another common number system is called Octal (base 8).

Exercise: convert 0xcab into Octal.

CS 241 Spring 2019 02: MIPS Architecture 16



RAM

• Big array of n bytes (n is large), away from the CPU

• Each cell has an address 0, 1, 2, . . ., n-1

• Each 4-byte block 4k , . . ., 4k+3 (for k=0,1,. . .) is a word

• Words have addresses 0x0, 0x4, 0x8, 0xc, 0x10,

0x14, 0x18, 0x1c, 0x20, ...

• Known as word aligned ; i.e. divisible by 4

Data in RAM must be loaded into registers before the CPU can

use it!

CS 241 Spring 2019 02: MIPS Architecture 17



RAM access is very slow compared with register access.

What does your CPU while it waits?

In a simple scenario, the CPU does nothing and simply waits for

the needed data to continue. You may assume this behaviour in

CS 241.

In some architectures, instead of simply doing nothing, your

CPU may switch to work on another thread.

CS 241 Spring 2019 02: MIPS Architecture 18



Communicating with RAM

Two operations: load and store

Load transfers a word from a source address in RAM into a

target register.

MIPS Reference Sheet: lw $t, i($s) and sw $t, i($s)

Binary: 1000 11ss ssst tttt iiii iiii iiii iiii

• i($s) = base address $s + offset i (RAM is an array)

• i is an integer

How do we encode an integer value into binary?

CS 241 Spring 2019 02: MIPS Architecture 19



Communicating with RAM

Two operations: load and store

Load transfers a word from a source address in RAM into a

target register.

MIPS Reference Sheet: lw $t, i($s) and sw $t, i($s)

Binary: 1000 11ss ssst tttt iiii iiii iiii iiii

• i($s) = base address $s + offset i (RAM is an array)

• i is an integer (in bytes)

How do we encode an integer value into binary?

Two’s complement

CS 241 Spring 2019 02: MIPS Architecture 20



In the load instruction, i is an immediate value.

An immediate value is one that is encoded directly into the

MIPS instruction (code).

When encoding MIPS instructions:

• Register numbers are encoded as unsigned binary.

• Immediate values are encoded as two’s complement binary

(often using 16 bits).

CS 241 Spring 2019 02: MIPS Architecture 21



MIPS Reference Sheet: lw $t, i($s)

Binary: 1000 11ss ssst tttt iiii iiii iiii iiii

Example: Given $1 stores the base address of an array and $2

stores the length, load the value at index 7 into $3.

• Note: There are 16 bits reserved for integer i.

• Size of an element is 4 bytes

CS 241 Spring 2019 02: MIPS Architecture 22



MIPS Reference Sheet: lw $t, i($s)

Binary: 1000 11ss ssst tttt iiii iiii iiii iiii

Example: Given $1 stores the base address of an array and $2

stores the length, load the value at index 7 into $3.

• Note: There are 16 bits reserved for integer i.

• Size of an element is 4 bytes⇒ i is 7× 4 = 28 bytes

• 28 in 16-bit binary is: 0000 0000 0001 1100

Assembly: lw $3, 28($1)

Final: 1000 1100 0010 0011 0000 0000 0001 1100

CS 241 Spring 2019 02: MIPS Architecture 23



The load and store operations use two special registers that are

part of the CPU.

• The address of data to load from RAM is stored in Memory

Address Register (MAR).

• The address then goes on the bus and is delivered to RAM.

• Data from that location is then returned on the bus and

stored in Memory Data Register (MDR).

• Contents of MDR are then moved to target register.

Store is similar.

CS 241 Spring 2019 02: MIPS Architecture 24



Executing Code
Recall: a program is stored in RAM away from the CPU.

How does the CPU know where the next instruction to execute is?

• A special register called the Program Counter (PC) stores the

memory address of the next instruction to execute.

• Instruction Register (IR) holds current instruction.

• A program needs a starting point. By convention, we guarantee

that a specific address (such as 0) contains code.

PC holds the address of the next instruction while the current

instruction is executing.

CS 241 Spring 2019 02: MIPS Architecture 25



A program called a loader loads a program into memory and sets

the PC to the address of the first instruction.

CS241 uses mips.twoints and mips.array to load

programs into memory address 0.

mips.twoints inputs two integer values that will be stored in

$1 and $2.

mips.array inputs an array of integers where the base

address is stored in $1 and length in $2.

We will discuss other possible loaders later.

CS 241 Spring 2019 02: MIPS Architecture 26



Fetch-Execute Cycle
The only program your computer really runs is:

PC <- 0

loop

IR <- MEM[PC] // MEM[]: memory, RAM

PC <- PC + 4

Decode and Execute instruction in IR

end loop

CS 241 Spring 2019 02: MIPS Architecture 27



Ending a Program
Recall: A loader program, loaded your program into RAM and set

the PC to start its execution.

The fetch-execute cycle keeps on going so what should you do

when your program ends?

CS 241 Spring 2019 02: MIPS Architecture 28



Ending a Program
Recall: A loader program, loaded your program into RAM and set

the PC to start its execution.

The fetch-execute cycle keeps on going so what should you do

when your program ends?

• When your program ends, it should return control back to the

loader.

Where is the address of the next instruction stored?

CS 241 Spring 2019 02: MIPS Architecture 29



Ending a Program
Recall: A loader program, loaded your program into RAM and set

the PC to start its execution.

The fetch-execute cycle keeps on going so what should you do

when your program ends?

• When your program ends, it should return control back to the

loader.

Where is the address of the next instruction stored? PC

What memory address do we need to set PC to?

CS 241 Spring 2019 02: MIPS Architecture 30



Ending a Program
Recall: A loader program, loaded your program into RAM and set

the PC to start its execution.

The fetch-execute cycle keeps on going so what should you do

when your program ends?

• When your program ends, it should return control back to the

loader.

Where is the address of the next instruction stored? PC

What memory address do we need to set PC to?

Address of next instruction of the loader program.

Which memory address is that???

CS 241 Spring 2019 02: MIPS Architecture 31



Which memory address is that???

The memory address you want is in $31.

Remember $31 is special.

CS 241 Spring 2019 02: MIPS Architecture 32



Which memory address is that???

The memory address you want is in $31.

Remember $31 is special.

The loader will set $31 with the address of its next instruction.

To set the PC← $31, use the Jump Register instruction jr $31

Example: Write a program that adds the values in registers $1 and

$2, stores the sum in $3 and returns.

add $3, $1, $2

jr $31

Exercise: convert to binary and hexadecimal.

CS 241 Spring 2019 02: MIPS Architecture 33



Getting Started on A1
241:> source /u/cs241/setup

241:> cs241.wordasm < add1_2.hex > add1_2.mips

241:> mips.twoints add1_2.mips

Address Memory (RAM) Assembly

0x0000 0000 0000 0010 0010 0001 1000 0010 0000 add $3, $1, $2

0x0004 0000 0011 1110 0000 0000 0000 0000 1000 jr $31

0x0008 . . .

Enter value for register 1: 1

Enter value for register 2: 2

Running MIPS program.

MIPS program completed normally.

$01 = 0x00000001 $02 = 0x00000002 $03 = 0x00000003

CS 241 Spring 2019 02: MIPS Architecture 34


