Stable Sorting

If keys are unique, we generally consider sorted order to be increasing
(sometimes also known as strictly increasing) order.

For example, given: 27834 16 5, sorted orderis: 12345678

If we allow keys to be repeated, the natural ordering also follows.
Given: 21234121,sortedorderis: 11122234

Is the first 1 the same as the second 1 or third 1?

We typically focus on the problem of sorting keys but data is rarely only
the keys. Generally, data is a key-value pair; i.e., (key, value).

While the keys may be the same (all 1s), their associated values are
likely different.

(SCS, UW) CS135 — Module Stable Sort Fall 2025 1/13

Consider the following list of (key, value) pairs of type (Num, Sym):
"((1 one) (2 one) (1 two) (1 three) (2 two) (1 four))

There are many orderings that we would consider sorted (by key):
"((1 one) (1 three) (1 two) (1 four) (2 two) (2 one))
@ '((1 four) (1 three) (1 two) (1 one) (2 two) (2 one))
@ '((1 three) (1 one) (1 two) (1 four) (2 one) (2 two))
@ '((1 one) (1 two) (1 three) (1 four) (2 one) (2 two))

In this example, there are 48 possible orderings that are sorted.
Different sorting algorithms will produce different orderings.

A sort that is stable has the additional property that when keys are the
same, the original order will be maintained,; i.e., the only ordering that
is stable is:

@ '((1 one) (1 two) (1 three) (1 four) (2 one) (2 two))

(SCS, UW) CS135 — Module Stable Sort Fall 2025 2/18

A Stable Mergesort

Outline for a mergesort algorithm:

@ Split the given list into two lists of equal (or almost equal) length.
© Recursively apply mergesort on each of the smaller lists.

© Believe in recursion = the recursion produces two sorted lists.
© Merge the two smaller lists together into a single sorted list.

To achieve a stable mergesort, we need to think about how the
splitting in step 1 and the merging in step 4 work.

(SCS, UW) CS135 — Module Stable Sort Fall 2025 3/13

A Stable Mergesort - splitting

In L14 S29, keep-next and skip-next were used to split a list into two:
(list 843916250 7)
= (list 8 31 2 0) (list 4 9 6 5 7)
@ Items at even numbered indices are placed in one list, and odd
numbered indices in the other.

@ This has made some of the original ordering less obvious.
For example: only using the two resulting lists, is it easy to
determine if 2 appeared before or after 5 in the original list?
It can be done but would take some work.

A more common method is to split the list into first half and second half.

(list 843 9162507)
= (list 8 4 3 9 1) (list 6 2 5 0 7)

@ We know everything in the first list appeared before anything in
the second list.

(SCS, UW) CS135 — Module Stable Sort Fall 2025 4/13

Splitting a list into a first half and second half

Recall from L10:

(define (first-n n 1lst)
(cond [(or (empty? lst) (zero? n)) empty]
[else (cons (first lst)
(first-n (subl n) (rest 1st)))]))

(define (rest-n n 1lst)
(cond [(or (empty? 1lst) (zero? n)) 1lst]
[else (rest-n (subl n) (rest 1lst))]))

(check-expect (first-n 3 '(1 23456 7))'(123))
(check-expect (rest-n 3 '(1234567)) '(4567))

(SCS, UW) CS135 — Module Stable Sort Fall 2025

5/13

Splitting a list into a first half and second half

;5 splits a list into nearly equal halves
;7 osplit: (listof Any) -> (list (listof Any) (listof Any))
(define (split 1lst)
(Local [(define n (quotient (length lst) 2))]
(list (first-n n 1st) (rest-n n 1st))))

(check-expect (split '(1234567)) '((123) (45617)))
(check-expect (split '(a b cde f)) '((abc) (de f)))

(check-expect (split '((1 one) (1 two) (1 three) (1 four)))
"(((1 one) (1 two)) ((1 three) (1 four))))

(SCS, UW) CS135 — Module Stable Sort Fall 2025 6/13

Consider the behaviour merge from L10

;; merge: (listof Num) (listof Num) -> (listof Num)
;5 Requires: lists must be sorted in increasing order
(define (merge lstl 1st2)
(cond [(empty? lstl) lst2]
[(empty? 1st2) lstl]
[(< (first 1lstl) (first 1lst2))
(cons (first lstl) (merge (rest lstl) 1st2))]
[(> (first 1lstl) (first 1lst2))
(cons (first lst2) (merge 1stl (rest 1st2)))]
[else (cons (first lstl
(cons (first lst2)
(merge (rest lstl) (rest 1st2))))1))

Note: this version of merge only works with a list of keys.
(merge '"(1 1) '"(1 1)) == '"(1111) ; is it stable?

(SCS, UW) CS135 — Module Stable Sort Fall 2025 7/13

Consider the behaviour merge from L10
We need to modify merge to work with our (key, value) pairs.

;7 Produce the key from a (list key value)
;7 get-key: (list Num Sym) -> Num
(define (get-key kvp) (first kvp))

We can then modify the cases in merge

(define (merge 1stl 1st2)
(cond [(empty? lstl) lst2]

[(< (get-key (first lstl)) (get-key (first 1st2)))
(cons (first lstl) (merge (rest 1lstl) 1st2))]
[...1))

(merge (list (1 'one) (1 'two)) (list (1 'three) (1 'four)))
=> (list (1 'one) (1 'three) (1 'two) (1 'four))

@ This doesn’t seem to help to achieve stability!

(SCS, UW) CS135 — Module Stable Sort Fall 2025 8/13

A simplified implementation of merge

(define (merge lstl 1st2)
(cond [(empty? lstl) 1lst2]
[(empty? lst2) 1lstl]
[(< (first 1stl) (first lst2)) ; (get-key (first 1lst))

(cons (first 1stl) (merge (rest lstl) 1lst2))]
[else

(cons (first 1st2) (merge lstl (rest lst2)))1))

(merge (list (1 'one) (1 'two)) (list (1 'three) (1 'four)))
=> (list (1 'three) (1 'four) (1 'one) (1 'two))

@ This prioritizes items from 1st2 over 1st1 when keys are the same.
@ To get the order we want, we could swap the arguments of merge.

@ Alternatively, we could change < to <= to prioritize items from 1st1
over lst2.

(SCS, UW) CS135 — Module Stable Sort Fall 2025 9/13

Generalizing merge

What if we want to sort string? Or use <= instead of |<|?

@ Define a higher-order function with a parameter <? that consumes
a comparison operator for the type of items in the consumed lists.

(define (merge <? 1lstl 1st2)
(cond [(empty? lstl) 1lst2]
[(empty? lst2) 1lstl]
[(<? (first 1stl) (first 1st2))
(cons (first lstl) (merge <? (rest 1stl) lst2))]
[else

(cons (first lst2) (merge <? lstl (rest lst2)))]))
(check-expect (merge string<? '("Alice" "Carol") '("Bob"))

"("Alice" "Bob" "Carol"))
(check-expect (merge > '(6 4 2) '(7531)) '(7654321))

(SCS, UW) CS135 — Module Stable Sort Fall 2025 10/13

Generalizing merge

;; compares keys from (key, value) pairs using <
;5 kvp<: (list Num Sym) (list Num Sym) -> Bool
(define (kvp< kvpl kvp2)

(< (get-key (first kvpl)) (get-key (first kvp2))))

;5 compares keys from (key, value) pairs using <=
(define (kvp<= kvpl kvp2)
(<= (get-key (first kvpl)) (get-key (first kvp2))))

Note: get-key is now part of the comparison operator.

(check-expect (merge kvp< (list (1 'three) (1 'four))
(list (1 'one) (1 'two)))
(list (1 'one) (1 'two) (1 'three) (1 'four)))

(check-expect (merge kvp<= (list (1 'one) (1 'two))
(list (1 'three) (1 'four)))
(list (1 'one) (1 'two) (1 'three) (1 'four)))
(SCS, UW) CS135 — Module Stable Sort Fall 2025 11/13

Stable Mergesort - choices

;5 Requires <? is a strict order operator
define (mergesort <? 1lst)
(cond [(or (empty? lst) (empty? (rest 1lst))) 1lst]
[else (local [(define s (split lst))]
(merge <? (mergesort (second s))
(mergesort (first s))))1))]

;; Requires <=? is an ordering operator with equality
define (mergesort <=? 1lst)
(cond [(or (empty? 1lst) (empty? (rest lst))) 1lstl]
[else (local [(define s (split 1lst))]
(merge <=? (mergesort (first s))
(mergesort (second s))))]1))]

(SCS, UW) CS135 — Module Stable Sort Fall 2025 12/13

Then there is this ...

A function that makes stable sorting functions

;; Produces a sort function from a predicate

;7 Requires: the consumed comparison operator is a strict
ordering

;5 make-sort: (X X -> Bool) -> ((listof X)
(define (make-sort <?)
(Local [(define (mergesort 1st)
(cond [(or (empty? lst) (empty? (rest lst))) lst]
[else
(Local [(define s (split 1lst))]

(merge <? (mergesort (second s))
(mergesort (first s))))1))]

-> (listof X))

mergesort))

See L18 Slides 31-35 for more.

(SCS, UW) CS135 — Module Stable Sort Fall 2025 13/13

	Stable Sorting
	A Stable Mergesort
	A Stable Mergesort - splitting
	Splitting a list into a first half and second half
	Splitting a list into a first half and second half
	Consider the behaviour merge from L10
	Consider the behaviour merge from L10
	A simplified implementation of merge
	Generalizing merge
	Generalizing merge
	Stable Mergesort - choices
	Then there is this ...

