
Stable Sorting

If keys are unique, we generally consider sorted order to be increasing
(sometimes also known as strictly increasing) order.

For example, given: 2 7 8 3 4 1 6 5, sorted order is: 1 2 3 4 5 6 7 8

If we allow keys to be repeated, the natural ordering also follows.
Given: 2 1 2 3 4 1 2 1, sorted order is: 1 1 1 2 2 2 3 4

Is the first 1 the same as the second 1 or third 1?
We typically focus on the problem of sorting keys but data is rarely only
the keys. Generally, data is a key-value pair; i.e., (key, value).

While the keys may be the same (all 1s), their associated values are
likely different.

(SCS, UW) CS135 – Module Stable Sort Fall 2025 1 / 13

Consider the following list of (key, value) pairs of type (Num, Sym):
'((1 one) (2 one) (1 two) (1 three) (2 two) (1 four))

There are many orderings that we would consider sorted (by key):
'((1 one) (1 three) (1 two) (1 four) (2 two) (2 one))

'((1 four) (1 three) (1 two) (1 one) (2 two) (2 one))

'((1 three) (1 one) (1 two) (1 four) (2 one) (2 two))

'((1 one) (1 two) (1 three) (1 four) (2 one) (2 two))

In this example, there are 48 possible orderings that are sorted.
Different sorting algorithms will produce different orderings.

A sort that is stable has the additional property that when keys are the
same, the original order will be maintained; i.e., the only ordering that
is stable is:

'((1 one) (1 two) (1 three) (1 four) (2 one) (2 two))

(SCS, UW) CS135 – Module Stable Sort Fall 2025 2 / 13

A Stable Mergesort

Outline for a mergesort algorithm:

1 Split the given list into two lists of equal (or almost equal) length.
2 Recursively apply mergesort on each of the smaller lists.
3 Believe in recursion ⇒ the recursion produces two sorted lists.
4 Merge the two smaller lists together into a single sorted list.

To achieve a stable mergesort, we need to think about how the
splitting in step 1 and the merging in step 4 work.

(SCS, UW) CS135 – Module Stable Sort Fall 2025 3 / 13

A Stable Mergesort - splitting
In L14 S29, keep-next and skip-next were used to split a list into two:
(list 8 4 3 9 1 6 2 5 0 7)

⇒ (list 8 3 1 2 0) (list 4 9 6 5 7)

Items at even numbered indices are placed in one list, and odd
numbered indices in the other.
This has made some of the original ordering less obvious.
For example: only using the two resulting lists, is it easy to
determine if 2 appeared before or after 5 in the original list?
It can be done but would take some work.

A more common method is to split the list into first half and second half.
(list 8 4 3 9 1 6 2 5 0 7)

⇒ (list 8 4 3 9 1) (list 6 2 5 0 7)

We know everything in the first list appeared before anything in
the second list.

(SCS, UW) CS135 – Module Stable Sort Fall 2025 4 / 13

Splitting a list into a first half and second half

Recall from L10:

(define (first-n n lst)
(cond [(or (empty? lst) (zero? n)) empty]

[else (cons (first lst)
(first-n (sub1 n) (rest lst)))]))

(define (rest-n n lst)
(cond [(or (empty? lst) (zero? n)) lst]

[else (rest-n (sub1 n) (rest lst))]))

(check-expect (first-n 3 '(1 2 3 4 5 6 7))'(1 2 3))
(check-expect (rest-n 3 '(1 2 3 4 5 6 7)) '(4 5 6 7))

(SCS, UW) CS135 – Module Stable Sort Fall 2025 5 / 13

Splitting a list into a first half and second half

;; splits a list into nearly equal halves
;; split: (listof Any) -> (list (listof Any) (listof Any))
(define (split lst)
(local [(define n (quotient (length lst) 2))]

(list (first-n n lst) (rest-n n lst))))

(check-expect (split '(1 2 3 4 5 6 7)) '((1 2 3) (4 5 6 7)))
(check-expect (split '(a b c d e f)) '((a b c) (d e f)))

(check-expect (split '((1 one) (1 two) (1 three) (1 four)))
'(((1 one) (1 two)) ((1 three) (1 four))))

(SCS, UW) CS135 – Module Stable Sort Fall 2025 6 / 13

Consider the behaviour merge from L10

;; merge: (listof Num) (listof Num) -> (listof Num)
;; Requires: lists must be sorted in increasing order
(define (merge lst1 lst2)
(cond [(empty? lst1) lst2]

[(empty? lst2) lst1]
[(< (first lst1) (first lst2))
(cons (first lst1) (merge (rest lst1) lst2))]
[(> (first lst1) (first lst2))
(cons (first lst2) (merge lst1 (rest lst2)))]
[else (cons (first lst1

(cons (first lst2)
(merge (rest lst1) (rest lst2))))]))

Note: this version of merge only works with a list of keys.
(merge '(1 1) '(1 1)) => '(1 1 1 1) ; is it stable?

(SCS, UW) CS135 – Module Stable Sort Fall 2025 7 / 13

Consider the behaviour merge from L10
We need to modify merge to work with our (key, value) pairs.

;; Produce the key from a (list key value)
;; get-key: (list Num Sym) -> Num
(define (get-key kvp) (first kvp))

We can then modify the cases in merge

(define (merge lst1 lst2)
(cond [(empty? lst1) lst2]

...
[(< (get-key (first lst1)) (get-key (first lst2)))
(cons (first lst1) (merge (rest lst1) lst2))]
[...]))

(merge (list (1 'one) (1 'two)) (list (1 'three) (1 'four)))

=> (list (1 'one) (1 'three) (1 'two) (1 'four))

This doesn’t seem to help to achieve stability!
(SCS, UW) CS135 – Module Stable Sort Fall 2025 8 / 13

A simplified implementation of merge

(define (merge lst1 lst2)
(cond [(empty? lst1) lst2]

[(empty? lst2) lst1]
[(< (first lst1) (first lst2)) ; (get-key (first lst))
(cons (first lst1) (merge (rest lst1) lst2))]

[else
(cons (first lst2) (merge lst1 (rest lst2)))]))

(merge (list (1 'one) (1 'two)) (list (1 'three) (1 'four)))

=> (list (1 'three) (1 'four) (1 'one) (1 'two))

This prioritizes items from lst2 over lst1 when keys are the same.
To get the order we want, we could swap the arguments of merge.
Alternatively, we could change < to <= to prioritize items from lst1

over lst2.

(SCS, UW) CS135 – Module Stable Sort Fall 2025 9 / 13

Generalizing merge

What if we want to sort string? Or use <= instead of |<|?
Define a higher-order function with a parameter <? that consumes
a comparison operator for the type of items in the consumed lists.

(define (merge <? lst1 lst2)
(cond [(empty? lst1) lst2]

[(empty? lst2) lst1]
[(<? (first lst1) (first lst2))
(cons (first lst1) (merge <? (rest lst1) lst2))]
[else

(cons (first lst2) (merge <? lst1 (rest lst2)))]))

(check-expect (merge string<? '("Alice" "Carol") '("Bob"))
'("Alice" "Bob" "Carol"))

(check-expect (merge > '(6 4 2) '(7 5 3 1)) '(7 6 5 4 3 2 1))

(SCS, UW) CS135 – Module Stable Sort Fall 2025 10 / 13

Generalizing merge

;; compares keys from (key, value) pairs using <
;; kvp<: (list Num Sym) (list Num Sym) -> Bool
(define (kvp< kvp1 kvp2)
(< (get-key (first kvp1)) (get-key (first kvp2))))

;; compares keys from (key, value) pairs using <=
(define (kvp<= kvp1 kvp2)
(<= (get-key (first kvp1)) (get-key (first kvp2))))

Note: get-key is now part of the comparison operator.

(check-expect (merge kvp< (list (1 'three) (1 'four))
(list (1 'one) (1 'two)))

(list (1 'one) (1 'two) (1 'three) (1 'four)))

(check-expect (merge kvp<= (list (1 'one) (1 'two))
(list (1 'three) (1 'four)))

(list (1 'one) (1 'two) (1 'three) (1 'four)))
(SCS, UW) CS135 – Module Stable Sort Fall 2025 11 / 13

Stable Mergesort - choices

;; Requires <? is a strict order operator
define (mergesort <? lst)
(cond [(or (empty? lst) (empty? (rest lst))) lst]

[else (local [(define s (split lst))]
(merge <? (mergesort (second s))

(mergesort (first s))))]))]

;; Requires <=? is an ordering operator with equality
define (mergesort <=? lst)
(cond [(or (empty? lst) (empty? (rest lst))) lst]

[else (local [(define s (split lst))]
(merge <=? (mergesort (first s))

(mergesort (second s))))]))]

(SCS, UW) CS135 – Module Stable Sort Fall 2025 12 / 13

Then there is this ...

A function that makes stable sorting functions

;; Produces a sort function from a predicate
;; Requires: the consumed comparison operator is a strict

ordering
;; make-sort: (X X -> Bool) -> ((listof X) -> (listof X))
(define (make-sort <?)
(local [(define (mergesort lst)

(cond [(or (empty? lst) (empty? (rest lst))) lst]
[else
(local [(define s (split lst))]

(merge <? (mergesort (second s))
(mergesort (first s))))]))]

mergesort))

See L18 Slides 31–35 for more.

(SCS, UW) CS135 – Module Stable Sort Fall 2025 13 / 13

	Stable Sorting
	A Stable Mergesort
	A Stable Mergesort - splitting
	Splitting a list into a first half and second half
	Splitting a list into a first half and second half
	Consider the behaviour merge from L10
	Consider the behaviour merge from L10
	A simplified implementation of merge
	Generalizing merge
	Generalizing merge
	Stable Mergesort - choices
	Then there is this ...

