Multics- The First Seven Years

Emil Tsalapatis

September 11, 2018
Table of contents

Background

The Paper

Memory Management

Aftermath and Legacy
State of the Art in 1965

- Efforts towards interactive computing - CTSS
- Software-Hardware Codesign - Burroughs 5500
- Virtual Memory, Interactive Computing etc. introduced but not common
The Multics Project

- (1965) Introduction and Overview of the Multics System, by Corbato and Vyssotsky
- Computing power as a utility
- Reliability
- Built to last, i.e. portability and scalability
Functional Requirements

- Usability
 - Terminal Access
 - Hierarchical Storage
- Reliability
 - Continuous Operation
 - Data Integrity
- Versatility
 - Scalability wrt Hardware (across both machine classes and generations)
 - Scalability wrt Client Size
 - Different Programming Environments
Design Process

- Unprecedented Undertaking, except maybe for CTSS
- Standard engineering methodologies
- ...are what led to the project falling behind schedule
- Most requirements partially fulfilled at the time of the paper’s publication
User View

- One user - one process
- User calls system-provided PL/I routines
- Usability Enhancements:
 - The compiler as a command, complete with error messages
 - Hierarchical File System
Technical Details

- Hot swapping hardware
- Virtual environments (e.g. APL, Dartmouth BASIC)
- Implementation almost fully in PL/I, in full PL/I
- Hardware Protection Mechanisms (Permission bits, Ring-Based Security Model)

Most interestingly:
- Two-level Memory Management, Segmentation + Demand Paging
Physical Memory

- Up to 75 MB of Physical Memory
- Exorbitant Price per MB
- 36-bit words, 24-bit physical addresses

Address Format

Credit: Virtual Memory, Processes, and Sharing in Multics by Daley et al, retrieved from
https://multicians.org/daley-dennis.html
Instruction Format

Credit: Virtual Memory, Processes, and Sharing in Multics by Daley et al, retrieved from https://multicians.org/daley-dennis.html
Segmentation

- Explicit Memory Management
- Everything is a segment, even files!
- IPC / Shared Libraries Made Easy
Segmentation (Cont.)

- Variable sized
- Addressable by symbolic name
- Name resolution can be deferred to runtime
Honeywell 645 Segmentation

- Variable Sized Segments
- Addressable By Name
Honeywell 645 Segmentation

Credit: The Multics Virtual Memory: Concepts and Design by Bensoussan et al, retrieved from
https://multicians.org/multics-vm.html
Paging

- Supervisor-initiated Memory Management
- Even the Supervisor can be paged out (partly)
- No sophisticated memory management algorithms yet
 - OPT algorithm for page replacement found in 1966
 - Belady’s anomaly recorded in 1969
- Accelerated using a TLB
Honeywell 645 Paging

- No access bits, permissions are segment-based
- Per-segment page tables
- 64-entry page tables
 - 1K word pages
 - Segments constrained to 64K words

Honeywell 645 Paging

Credit: The Multics Virtual Memory: Concepts and Design by Bensoussan et al, retrieved from https://multicians.org/multics-vm.html
Later Developments

Credit: Multicians Website, https://multicians.org/history.html
Intel x86

- Support for Multics Software Concepts
- 4 Protection Rings
- Call/Interrupt/Trap Gates (i.e. segment juggling)
Unix

- Different Design Goals, Different Target Platforms
- Technical e.g. IO Streams
- Nontechnical e.g. Communal Computing
Questions?