
Processes

• A process is an instance of a program running
• Modern OSes runmultiple processes simultaneously
• Very early OSes only ran one process at a time
• Examples (can all run simultaneously):

- emacs – text editor
- firefox – web browser

• Non-examples (implemented as one process):
- Multiple firefox windows or emacs frames (still one process)

• Why processes?
- Simplicity of programming
- Speed: Higher throughput, lower latency

1 / 43

A process’s view of the world

• Each process has own view of machine
- Its own address space
- Its own open files
- Its own virtual CPU (through preemptive
multitasking)

• *(char *)0xc000 di�erent in P1 & P2
• Simplifies programmingmodel

- gcc does not care that firefox is running

• Sometimes want interaction between processes
- Simplest is through files: emacs edits file, gcc compiles it
- More complicated: Shell/command, Windowmanager/app.

2 / 43

Outline

1 Application/Kernel Interface

2 User view of processes

3 Kernel view of processes

3 / 43

System Calls

• Systems calls are the interface between processes and the
kernel

• A process invokes a system call to request operating system
services

• fork(), waitpid(), open(), close()
• Note: Signals are another commonmechanism to allow the
kernel to notify the application of an important event (e.g.,
Ctrl-C)
- Signals are like interrupts/exceptions for application code

4 / 43

System Call So�ware Stack

Application

Syscall Library unprivileged
code

privileged
code

Kernel

1

2

3

4

5

5 / 43

Kernel Privilege

• Hardware provides two or more privilege levels (or
protection rings)

• Kernel code runs at a higher privilege level than applications
• Typically called Kernel Mode vs. User Mode
• Code running in kernel mode gains access to certain CPU
features
- Accessing restricted features (e.g. Co-processor 0)
- Disabling interrupts, setup interrupt handlers
- Modifying the TLB (for virtual memory management)

• Allows the kernel to isolate processes from one another and
from the kernel
- Processes cannot read/write kernel memory
- Processes cannot directly call kernel functions

6 / 43

How System Calls Work

• The kernel only runs through well defined entry points
• Interrupts

- Interrupts are generated by devices to signal needing attention
- E.g. Keyboard input is ready

• Exceptions
- Exceptions are caused by the processor executing code
- E.g. Divide by zero, page fault, etc.

7 / 43

Interrupts

• An interrupt or exception causes the hardware to transfer
control to a fixed location in memory, where the interrupt
handler is located

• Interrupt handlers are part of the kernel
• When an interrupt occurs, the processor switches to kernel
mode (or privilegedmode) allowing the kernel to take over
- This is how the kernel gets run with privileges
- Interrupts can still be delivered while running the kernel
- Exception is that spinlocks disabled interrupts

8 / 43

Exceptions

• Exceptions are conditions that occur during the execution of
a program (or kernel) that require attention
- E.g. divide by zero, page faults, illegal instructions, etc.

• Exceptions are detected by the CPU during execution
• CPU handles exceptions just like interrupts by transferring
control to the kernel
- Control is transferred to a fixed location where the exception
handler is located

- Processor is switches into privilegedmode

9 / 43

MIPS Exception Vectors

EX_IRQ 0 /* Interrupt */
EX_MOD 1 /* TLB Modify (write to read-only page) */
EX_TLBL 2 /* TLB miss on load */
EX_TLBS 3 /* TLB miss on store */
EX_ADEL 4 /* Address error on load */
EX_ADES 5 /* Address error on store */
EX_IBE 6 /* Bus error on instruction fetch */
EX_DBE 7 /* Bus error on data load *or* store */
EX_SYS 8 /* Syscall */
EX_BP 9 /* Breakpoint */
EX_RI 10 /* Reserved (illegal) instruction */
EX_CPU 11 /* Coprocessor unusable */
EX_OVF 12 /* Arithmetic overflow */

• Interrupts, exceptions, and system calls are handled through
the samemechanism

• Some processors specially handle system calls for
performance reasons

10 / 43

How System Calls Work Continued

• System calls are performed by triggering an exception
• Applications execute the syscall instruction to trigger the
EX_SYS exception
- Many processors include a similar instruction
- For example, x86 contains the syscall and/or sysenter
instructions, but with an optimized implementation

11 / 43

Hardware Handling

• Exception handlers in the R3000 are at fixed locations
• The processor jumps to these addresses whenever an
exception is encountered
- 0x8000_0000 User TLB Handler
- 0x8000_0080 General Exception Handler

• Remember that in MIPS 0x8000_0000-0x9FFF_FFFF is mapped
to the first 512 MBs of physical memory.

12 / 43

Hardware Handling Continued

• System Control Coprocessor (CP0) contains all the
information regarding the exception
- Use the mfc0/mtc0 (Move from/to co-processor 0) instruction
- c0_status CPU status including kernel/user mode flag
- c0_cause Cause of the exception
- c0_epc PC where the exception occurred
- c0_vaddr Virtual address associated with fault (e.g. page fault)
- c0_context Used by OS to store the CPU number

13 / 43

System Call Operations

• Application calls into C library (e.g. calls write())
• Library executes the syscall instruction
• Kernel exception handler 0x8000_0080 runs

- Switch to kernel stack
- Create a trap frame to save program state
- Determine the type of system call
- Determine which system call is being invoked
- Process call
- Restore application state from trap frame
- Return from exception

• Library wrapper function returns to application

14 / 43

Application Binary Interface/Calling Conventions

• Each architecture and OS define calling conventions
• Describes how registers are used in function calls and system
calls

• MIPS+OS/161 Calling Conventions
- System call number in v0
- First four arguments in a0, a1, a2, a3
- Remaining arguments passed on stack
- Result success/fail in a3 and return value/error code in v0

• Number for each system call in kern/include/kern/syscall.h
#define SYS_fork 0
#define SYS_vfork 1
#define SYS_execv 2
#define SYS__exit 3
#define SYS_waitpid 4
#define SYS_getpid 5
...

15 / 43

OS/161 CodeWalkthrough

• kern/arch/sys161/startup/start.S

• kern/arch/mips/locore/exception-mips1.S

• kern/arch/mips/locore/trap.c

• kern/arch/mips/syscall/syscall.c

16 / 43

Outline

1 Application/Kernel Interface

2 User view of processes

3 Kernel view of processes

17 / 43

Creating processes

• Original UNIX paper is a great reference on core system calls
• int fork (void);

- Create new process that is exact copy of current one
- Returns process ID of new process in “parent”
- Returns 0 in “child”

• int waitpid (int pid, int *stat, int opt);

- pid – process to wait for, or -1 for any
- stat – will contain exit value, or signal
- opt – usually 0 or WNOHANG
- Returns process ID or -1 on error

18 / 43

https://cs.uwaterloo.ca/~mashti/cs350-w18/unix.pdf

Deleting processes

• void exit (int status);

- Current process ceases to exist
- status shows up in waitpid (shi�ed)
- By convention, status of 0 is success, non-zero error

• int kill (int pid, int sig);

- Sends signal sig to process pid
- SIGTERMmost common value, kills process by default
(but application can catch it for “cleanup”)

- SIGKILL stronger, kills process always

• pid_t getpid(void);

- Get the current process ID

• pid_t getppid(void);

- Get the process ID of the parent process
19 / 43

Running programs

• int execve (char *prog, char **argv, char **envp);

- prog – full pathname of program to run
- argv – argument vector that gets passed to main
- envp – environment variables, e.g., PATH, HOME

• Generally called through a wrapper functions
- int execvp (char *prog, char **argv);
Search PATH for prog, use current environment

- int execlp (char *prog, char *arg, ...);
List arguments one at a time, finish with NULL

• Example: minish.c
- Loop that reads a command, then executes it

20 / 43

Process Startup: user/lib/crt0/mips/crt0.S

__start:
/* Load the "global pointer" register */
la gp, _gp

/* argc in a0 and argv in a1 */
li t0, 0xfffffff8 /* mask for stack alignment */
and sp, sp, t0 /* align the stack */
addiu sp, sp, -16 /* create our frame */

sw a1, __argv /* save second arg (argv) in __argv */

jal main /* call main */
nop /* delay slot */

21 / 43

Process Exit: user/lib/crt0/mips/crt0.S

move s0, v0 /* save return value */
jal exit /* call exit() */
move a0, s0 /* Set argument (in delay slot) */

jal _exit /* Try _exit() */
move a0, s0 /* Set argument (in delay slot) */

1:
move a0, s0
li v0, SYS__exit
syscall

j 1b /* loop back */
nop /* delay slot */

22 / 43

minishell.c (simplified)

pid_t pid; char **av;
void doexec () {
execvp (av[0], av);
perror (av[0]);
exit (1);

}

/* ... main loop: */
for (;;) {
parse_next_line_of_input (&av, stdin);
switch (pid = fork ()) {
case -1:
perror ("fork"); break;

case 0:
doexec ();

default:
waitpid (pid, NULL, 0); break;

}
}

23 / 43

UNIX file I/O

• Applications “open” files (or devices) by name
- I/O happens through open files

• int open(char *path, int flags, /*mode*/...);

- flags: O_RDONLY, O_WRONLY, O_RDWR
- O_CREAT: create the file if non-existent
- O_EXCL: (w. O_CREAT) create if file exists already
- O_TRUNC: Truncate the file
- O_APPEND: Start writing from end of file
- mode: final argument with O_CREAT

• Returns file descriptor—used for all I/O to file

24 / 43

Error returns

• What if open fails? Returns -1 (invalid fd)
• Most system calls return -1 on failure

- Specific kind of error in global int errno

• #include <sys/errno.h> for possible values
- 2 = ENOENT “No such file or directory”
- 13 = EACCES “Permission Denied”

• perror function prints human-readable message
- perror ("initfile");
→ “initfile: No such file or directory”

• Details:
- Typically errno is a thread local variable
- FreeBSD: C macro that calls __errno() to return the result

25 / 43

System Calls: lib/libc/arch/mips/syscalls-mips.S

#define SYSCALL(sym, num) \
.globl sym ; \
.type sym,@function ; \

sym: ; \
j __syscall ; \
addiu v0, $0, SYS_##sym ; \
.end sym ; \
.set reorder

__syscall:
syscall /* make system call */
beq a3, $0, 1f /* if a3 is zero, call succeeded */
nop /* delay slot */
sw v0, errno /* call failed: store errno */
li v1, -1 /* and force return value to -1 */
li v0, -1

1:
j ra /* return */
nop /* delay slot */

26 / 43

Operations on file descriptors

• int read (int fd, void *buf, int nbytes);

- Returns number of bytes read
- Returns 0 bytes at end of file, or -1 on error

• int write (int fd, void *buf, int nbytes);

- Returns number of bytes written, -1 on error

• off_t lseek (int fd, off_t pos, int whence);

- whence: 0 – start, 1 – current, 2 – end
. Returns previous file o�set, or -1 on error

• int close (int fd);

27 / 43

File descriptor numbers

• File descriptors are inherited by processes
- When one process spawns another, same fds by default

• Descriptors 0, 1, and 2 have special meaning
- 0 – “standard input” (stdin in ANSI C)
- 1 – “standard output” (stdout, printf in ANSI C)
- 2 – “standard error” (stderr, perror in ANSI C)
- Normally all three attached to terminal

• Example: type.c
- Prints the contents of a file to stdout

28 / 43

type.c

void
typefile (char *filename)
{

int fd, nread;
char buf[1024];

fd = open (filename, O_RDONLY);
if (fd == -1) {

perror (filename);
return;

}

while ((nread = read (fd, buf, sizeof (buf))) > 0)
write (1, buf, nread);

close (fd);
}

29 / 43

Manipulating file descriptors

• int dup2 (int oldfd, int newfd);

- Closes newfd, if it was a valid descriptor
- Makes newfd an exact copy of oldfd
- Two file descriptors will share same o�set
(lseek on one will a�ect both)

• int fcntl (int fd, F_SETFD, int val)

- Sets close on exec flag if val = 1, clears if val = 0
- Makes file descriptor non-inheritable by spawned programs

• Example: redirsh.c
- Loop that reads a command and executes it
- Recognizes command < input > output 2> errlog

30 / 43

redirsh.c

void doexec (void) {
int fd;
if (infile) { /* non-NULL for "command < infile" */
if ((fd = open (infile, O_RDONLY)) < 0) {
perror (infile);
exit (1);

}
if (fd != 0) {
dup2 (fd, 0);
close (fd);

}
}

/* ... do same for outfile→fd 1, errfile→fd 2 ... */

execvp (av[0], av);
perror (av[0]);
exit (1);

}
31 / 43

Pipes

• int pipe (int fds[2]);

- Returns two file descriptors in fds[0] and fds[1]
- Data written to fds[1]will be returned by read on fds[0]
- When last copy of fds[1] closed, fds[0]will return EOF
- Returns 0 on success, -1 on error

• Operations on pipes
- read/write/close – as with files
- When fds[1] closed, read(fds[0]) returns 0 bytes
- When fds[0] closed, write(fds[1]):

. Kills process with SIGPIPE

. Or if signal ignored, fails with EPIPE

• Example: pipesh.c
- Sets up pipeline command1 | command2 | command3 ...

32 / 43

pipesh.c (simplified)

void doexec (void) {
while (outcmd) {
int pipefds[2]; pipe (pipefds);
switch (fork ()) {
case -1:
perror ("fork"); exit (1);

case 0:
dup2 (pipefds[1], 1);
close (pipefds[0]); close (pipefds[1]);
outcmd = NULL;
break;

default:
dup2 (pipefds[0], 0);
close (pipefds[0]); close (pipefds[1]);
parse_command_line (&av, &outcmd, outcmd);
break;

}
}
... 33 / 43

Why fork?

• Most calls to fork followed by execve
• Could also combine into one spawn system call
• Occasionally useful to fork one process

- Unix dump utility backs up file system to tape
- If tape fills up, must restart at some logical point
- Implemented by forking to revert to old state if tape ends

• Real win is simplicity of interface
- Tons of things youmight want to do to child: Manipulate file
descriptors, set environment variables, reduce privileges, . . .

- Yet fork requires no arguments at all

34 / 43

Spawning a process without fork

• Without fork, needs tons of di�erent options for new process
• Example: Windows CreateProcess system call

- Also CreateProcessAsUser, CreateProcessWithLogonW,
CreateProcessWithTokenW, . . .

BOOL WINAPI CreateProcess(
_In_opt_ LPCTSTR lpApplicationName,
_Inout_opt_ LPTSTR lpCommandLine,
_In_opt_ LPSECURITY_ATTRIBUTES lpProcessAttributes,
_In_opt_ LPSECURITY_ATTRIBUTES lpThreadAttributes,
In BOOL bInheritHandles,
In DWORD dwCreationFlags,
_In_opt_ LPVOID lpEnvironment,
_In_opt_ LPCTSTR lpCurrentDirectory,
In LPSTARTUPINFO lpStartupInfo,
Out LPPROCESS_INFORMATION lpProcessInformation

);

35 / 43

http://msdn.microsoft.com/en-us/library/ms682425(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms682429(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms682431(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms682434(v=VS.85).aspx

Outline

1 Application/Kernel Interface

2 User view of processes

3 Kernel view of processes

36 / 43

Implementing processes

• Keep a data structure for each process
- Process Control Block (PCB)
- Called proc in Unix, task_struct in Linux

• Tracks state of the process
- Running, ready (runnable), waiting, etc.

• Includes information necessary to run
- Registers, virtual memory mappings, etc.
- Open files (including memory mapped files)

• Various other data about the process
- Credentials (user/group ID), signal mask,
controlling terminal, priority, accounting
statistics, whether being debugged, which
system call binary emulation in use, . . .

Open files

Registers

Program counter

Address space
(VM data structs)

Process state
Process ID
User id, etc.

PCB

37 / 43

Process states

new

ready running

terminated

waiting

admitted

interrupt

scheduler
dispatch exit

I/O or event
completion

I/O or event wait

• Process can be in one of several states
- new & terminated at beginning & end of life
- running – currently executing (or will execute on kernel return)
- ready – can run, but kernel has chosen di�erent process to run
- waiting – needs async event (e.g., disk operation) to proceed

• Which process should kernel run?
- if 0 runnable, run idle loop (or halt CPU), if 1 runnable, run it
- if>1 runnable, must make scheduling decision

38 / 43

Scheduling

• How to pick which process to run
• Scan process table for first runnable?

- Expensive. Weird priorities (small pids do better)
- Divide into runnable and blocked processes

• FIFO?
- Put threads on back of list, pull them from front:

head t1 t2 t3 t4
tail

• Priority?
- Give some threads a better shot at the CPU

39 / 43

Scheduling policy

• Want to balancemultiple goals
- Fairness – don’t starve processes
- Priority – reflect relative importance of procs
- Deadlines – must do X (play audio) by certain time
- Throughput – want good overall performance
- E�iciency – minimize overhead of scheduler itself

• No universal policy
- Many variables, can’t optimize for all
- Conflicting goals (e.g., throughput or priority vs. fairness)

• Wewill spend a whole lecture on this topic

40 / 43

Preemption

• Can preempt a process when kernel gets control
• Running process can vector control to kernel

- System call, page fault, illegal instruction, etc.
- May put current process to sleep—e.g., read from disk
- Maymake other process runnable—e.g., fork, write to pipe

• Periodic timer interrupt
- If running process used up quantum, schedule another

• Device interrupt
- Disk request completed, or packet arrived on network
- Previously waiting process becomes runnable
- Schedule if higher priority than current running proc.

• Changing running process is called a context switch

41 / 43

Context switch

42 / 43

Context switch details

• Very machine dependent. Typical things include:
- Save program counter and integer registers (always)
- Save floating point or other special registers
- Save condition codes
- Change virtual address translations

• Non-negligible cost
- Save/restore floating point registers expensive

. Optimization: only save if process used floating point
- May require flushing TLB (memory translation hardware)

. HWOptimization 1: don’t flush kernel’s own data from TLB

. HWOptimization 2: use tag to avoid flushing any data
- Usually causes more cache misses (switch working sets)

43 / 43

	Application/Kernel Interface
	User view of processes
	Kernel view of processes

