
Outline

1 Details of paging

2 The user-level perspective

3 Case study: 4.4 BSD

1 / 19



Some complications of paging

• What happens to available memory?
- Some physical memory tied up by kernel VM structures
- E.g., page tables, page metadata

• What happens to user/kernel crossings?
- More crossings into kernel
- Pointers in syscall arguments must be checked
(can’t just kill process if page not present—might need to page in)

• What happens to IPC?
- Must change hardware address space
- Increases TLBmisses
- Context switch flushes TLB entirely on old x86machines
(But not on MIPS. . .Why?)

2 / 19



Some complications of paging

• What happens to available memory?
- Some physical memory tied up by kernel VM structures
- E.g., page tables, page metadata

• What happens to user/kernel crossings?
- More crossings into kernel
- Pointers in syscall arguments must be checked
(can’t just kill process if page not present—might need to page in)

• What happens to IPC?
- Must change hardware address space
- Increases TLBmisses
- Context switch flushes TLB entirely on old x86machines
(But not on MIPS. . .Why? MIPS tags TLB entries with PID)

2 / 19



64-bit address spaces

• Recall x86-64 only has 48-bit virtual address space
• What if you want a 64-bit virtual address space?

- Straight hierarchical page tables not e�icient
- But so�ware TLBs (like MIPS) allow other possibilities

• Solution 1: Hashed page tables
- Store Virtual→ Physical translations in hash table
- Table size proportional to physical memory
- Clustering makes this more e�icient [Talluri]

• Solution 2: Guarded page tables [Liedtke]
- Omit intermediary tables with only one entry
- Add predicate in high level tables, stating the only virtual address
range mapped underneath + # bits to skip

3 / 19

https://cs.uwaterloo.ca/~mashti/cs350/sched/readings/clustered.pdf
https://cs.uwaterloo.ca/~mashti/cs350/sched/readings/guarded.pdf


Outline

1 Details of paging

2 The user-level perspective

3 Case study: 4.4 BSD

4 / 19



Recall typical virtual address space

kernel
stack

heap

uninitialized data (bss)

initialized data
read-only data

code (text)

breakpoint

• Dynamically allocatedmemory goes in heap
• Top of heap called breakpoint

- Addresses between breakpoint and stack all invalid
5 / 19



Early VM system calls

• OS keeps “Breakpoint” – top of heap
- Memory regions between breakpoint & stack fault on access

• char *brk (const char *addr);

- Set and return new value of breakpoint

• char *sbrk (int incr);

- Increment value of the breakpoint & return old value

• Can implement malloc in terms of sbrk
- But hard to “give back” physical memory to system

6 / 19



Memorymapped files

kernel
stack

heap

uninitialized data (bss)

initialized data
read-only data

code (text)

mmapped
regions

• Other memory objects between heap and stack

7 / 19



mmap system call

• void *mmap (void *addr, size_t len, int prot,
int flags, int fd, off_t offset)

- Map file specified by fd at virtual address addr
- If addr is NULL, let kernel choose the address

• prot – protection of region
- PROT_EXEC – executable
- PROT_READ – readable
- PROT_WRITE – writable
- PROT_NONE – inaccessible

• flags

- MAP_ANON – anonymous memory (fd should be -1)
- MAP_PRIVATE – modifications are private
- MAP_SHARED – modifications seen by everyone

8 / 19



More VM system calls

• int msync(void *addr, size_t len, int flags);
- Flush changes of mmapped file to backing store

• int munmap(void *addr, size_t len)
- Removes memory-mapped object

• int mprotect(void *addr, size_t len, int prot)
- Changes protection on pages to or of PROT_. . .

• int mincore(void *addr, size_t len, char *vec)
- Returns in vecwhich pages present

• int madvise(void *addr, size_t len, int advice);
- Advises the OS regarding the memory behavior
- MADV_FREE – Kernel can discard the memory
- MADV_WILLNEED – Will need the memory soon
- MADV_DONTNEED – Kernel can swap the memory
- MADV_NORMAL, MADV_SEQUENTIAL, MADV_RANDOM – Hint access pattern

9 / 19



Exposing page faults

• Signals are amechanism to receive notifications from the
kernel

• You can think of these as userspace exceptions

struct sigaction {
union { /* signal handler */
void (*sa_handler)(int);
void (*sa_sigaction)(int, siginfo_t *, void *);

};
sigset_t sa_mask; /* signal mask to apply */
int sa_flags;

};

int sigaction (int sig, const struct sigaction *act,
struct sigaction *oact)

• Can specify function to run on SIGSEGV
(Unix signal raised on invalid memory access)

10 / 19



Example: OpenBSD/i386 siginfo

struct sigcontext {
int sc_gs; int sc_fs; int sc_es; int sc_ds;
int sc_edi; int sc_esi; int sc_ebp; int sc_ebx;
int sc_edx; int sc_ecx; int sc_eax;

int sc_eip; int sc_cs; /* instruction pointer */
int sc_eflags; /* condition codes, etc. */
int sc_esp; int sc_ss; /* stack pointer */

int sc_onstack; /* sigstack state to restore */
int sc_mask; /* signal mask to restore */

int sc_trapno;
int sc_err;

};

• Linux uses ucontext_t – same idea, just uses nested
structures that won’t all fit on one slide

11 / 19



VM tricks at user level

• Combination of mprotect/sigaction very powerful
- Can use OS VM tricks in user-level programs [Appel&Li]
- E.g., fault, unprotect page, return from signal handler

• Technique used in object-oriented databases
- Bring in objects on demand
- Keep track of which objects may be dirty
- Managememory as a cache for much larger object DB

• Other interesting applications
- Useful for some garbage collection algorithms
- Snapshot processes (copy on write)

12 / 19



Outline

1 Details of paging

2 The user-level perspective

3 Case study: 4.4 BSD

13 / 19



4.4 BSD VM system [McKusick]

• Each process has a vmspace structure containing
- vm_map – machine-independent virtual address space
- vm_pmap – machine-dependent data structures
- statistics – e.g. for syscalls like getrusage ()

• vm_map is a linked list of vm_map_entry structs
- vm_map_entry covers contiguous virtual memory
- points to vm_object struct

• vm_object is source of data
- e.g. vnode object for memory mapped file
- points to list of vm_page structs (one per mapped page)
- shadow objects point to other objects for copy on write

14 / 19

http://proquest.safaribooksonline.com/9780768685275/ch05lev1sec4


4.4 BSD VM data structures

vmspace

vm_map_entry

vm_map_entry

vm_map_entry

vm_map_entry

shadow
object

vm_page

object

vnode/

shadow
object

vm_page

vnode/

object

vnode/

object

vm_page

vm_page

vm_page

vm_page

vm_page

vm_map

vm_pmap

stats

15 / 19



Pmap (machine-dependent) layer

• Pmap layer holds architecture-specific VM code
• VM layer invokes pmap layer

- On page faults to install mappings
- To protect or unmap pages
- To ask for dirty/accessed bits

• Pmap layer is lazy and can discardmappings
- No need to notify VM layer
- Process will fault and VM layer must reinstall mapping

• Pmap handles restrictions imposed by cache

16 / 19



Example uses

• vm_map_entry structs for a process
- r/o text segment→ file object
- r/w data segment→ shadow object→ file object
- r/w stack→ anonymous object

• New vm_map_entry objects a�er a fork:
- Share text segment directly (read-only)
- Share data through two new shadow objects
(must share pre-fork but not post-fork changes)

- Share stack through two new shadow objects

• Must discard/collapse superfluous shadows
- E.g., when child process exits

17 / 19



What happens on a fault?

• Traverse vm_map_entry list to get appropriate entry
- No entry? Protection violation? Send process a SIGSEGV

• Traverse list of [shadow] objects
• For each object, traverse vm_page structs
• Found a vm_page for this object?

- If first vm_object in chain, map page
- If read fault, install page read only
- Else if write fault, install copy of page

• Else get page from object
- Page in from file, zero-fill new page, etc.

18 / 19



Paging in day-to-day use

• Demand paging
- Read pages from vm_object of executable file

• Copy-on-write (fork, mmap, etc.)
- Use shadow objects

• Growing the stack, BSS page allocation
- A bit like copy-on-write for /dev/zero
- Can have a single read-only zero page for reading
- Special-case write handling with pre-zeroed pages

• Shared text, shared libraries
- Share vm_object (shadowwill be empty where read-only)

• Sharedmemory
- Two processes mmap same file, have same vm_object (no shadow)

19 / 19


	Details of paging
	The user-level perspective
	Case study: 4.4 BSD

