
File system fun

• File systems: traditionally hardest part of OS
- More papers on FSes than any other single topic

• Main tasks of file system:
- Don’t go away (ever)
- Associate bytes with name (files)
- Associate names with each other (directories)
- Can implement file systems on disk, over network, in memory, in
non-volatile ram (NVRAM), on tape, w/ paper.

- We’ll focus on disk and generalize later

• Today: files, directories, and a bit of performance

1 / 38

Why disks are di�erent

• Disk = First state we’ve seen that doesn’t go away

diskmemory
CRASH!

- So: Where all important state ultimately resides
• Slow (milliseconds access vs. nanoseconds for memory)

normalizedspeed

year

Processor speed: 2×/18mo

Disk access time: 7%/yr

• Huge (100–1,000x bigger thanmemory)
- How to organize large collection of ad hoc information?
- File System: Hierarchical directories, Metadata, Search

2 / 38

Disk vs. Memory

MLC NAND
Disk Flash DRAM

Smallest write sector sector byte
Atomic write sector sector byte/word
Random read 8ms 3-10 µs 50 ns
Randomwrite 8 ms 9-11 µs* 50 ns
Sequential read 100 MB/s 550–2500 MB/s > 1 GB/s
Sequential write 100 MB/s 520–1500 MB/s* > 1 GB/s
Cost $0.03/GB $0.35/GB $6/GiB
Persistence Non-volatile Non-volatile Volatile

*Flash write performance degrades over time

3 / 38

Disk review

• Disk reads/writes in terms of sectors, not bytes
- Read/write single sector or adjacent groups

• How to write a single byte? “Read-modify-write”
- Read in sector containing the byte
- Modify that byte
- Write entire sector back to disk
- Key: if cached, don’t need to read in

• Sector = unit of atomicity.
- Sector write done completely, even if crash in middle
(disk saves up enoughmomentum to complete)

• Larger atomic units have to be synthesized by OS
4 / 38

Some useful trends

• Disk bandwidth and cost/bit improving exponentially
- Similar to CPU speed, memory size, etc.

• Seek time and rotational delay improving very slowly
- Why? require moving physical object (disk arm)

• Disk accesses a huge system bottleneck & getting worse
- Bandwidth increase lets system (pre-)fetch large chunks for about
the same cost as small chunk.

- Trade bandwidth for latency if you can get lots of related stu�.
• Desktopmemory size increasing faster than typical workloads

- More andmore of workload fits in file cache
- Disk tra�ic changes: mostly writes and new data

• Memory and CPU resources increasing
- Usememory and CPU tomake better decisions
- Complex prefetching to support more IO patterns
- Delay data placement decisions reduce random IO

5 / 38

Files: named bytes on disk

• File abstraction:
- User’s view: named sequence of bytes

- FS’s view: collection of disk blocks
- File system’s job: translate name & o�set to disk blocks:

{file, o�set}−−→ FS −→disk address

• File operations:
- Create a file, delete a file
- Read from file, write to file

• Want: operations to have as few disk accesses as possible &
haveminimal space overhead (group related things)

6 / 38

What’s hard about grouping blocks?

• Like page tables, file systemmetadata are simply data
structures used to construct mappings

- Page table: map virtual page # to physical page #
23−−−−−−−−−−→ Page table −−−−−−−−−−→33

- File metadata: map byte o�set to disk block address
512−−−−−−−−−→ Unix inode −−−−−→8003121

- Directory: map name to disk address or file #
foo.c−−−−−−−−→ directory −−−−−−−−−−→44

7 / 38

FS vs. VM

• In both settings, want location transparency
- Application shouldn’t care about particular disk blocks or physical
memory locations

• In someways, FS has easier job than than VM:
- CPU time to do FSmappings not a big deal (= no TLB)
- Page tables deal with sparse address spaces and random access,
files o�en denser (0 . . . filesize− 1),∼sequentially accessed

• In someways FS’s problem is harder:
- Each layer of translation = potential disk access
- Space a huge premium! (But disk is huge?!?!) Reason?
Cache space never enough; amount of data you can get in one
fetch never enough

- Range very extreme: Many files<10 KB, some files many GB

8 / 38

Someworking intuitions

• FS performance dominated by # of disk accesses
- Say each access costs∼10 milliseconds
- Touch the disk 100 extra times = 1 second
- Can do a billion ALU ops in same time!

• Access cost dominated bymovement, not transfer:
seek time+ rotational delay+ # bytes/disk-bw

- 1 sector: 5ms + 4ms + 5µs (≈ 512 B/(100 MB/s))≈ 9ms
- 50 sectors: 5ms + 4ms + .25ms = 9.25ms
- Can get 50x the data for only∼3%more overhead!

• Observations that might be helpful:
- All blocks in file tend to be used together, sequentially
- All files in a directory tend to be used together
- All names in a directory tend to be used together

9 / 38

Common addressing patterns

• Sequential:
- File data processed in sequential order
- By far the most commonmode
- Example: editor writes out new file, compiler reads in file, etc

• Random access:
- Address any block in file directly without passing through
predecessors

- Examples: data set for demand paging, databases

• Keyed access
- Search for block with particular values
- Examples: associative data base, index
- Usually not provided by OS

10 / 38

Problem: how to track file’s data

• Disk management:
- Need to keep track of where file contents are on disk
- Must be able to use this to map byte o�set to disk block
- Structure tracking a file’s sectors is called an index node or inode
- Inodes must be stored on disk, too

• Things to keep in mind while designing file structure:
- Most files are small
- Much of the disk is allocated to large files
- Many of the I/O operations are made to large files
- Want good sequential and good random access
(what do these require?)

11 / 38

Strawman: contiguous allocation

• “Extent-based”: allocate files like segmentedmemory
- When creating a file, make the user pre-specify its length and
allocate all space at once

- Inode contents: location and size

• Example: IBM OS/360
• Pros?

- Simple, fast access, both sequential and random

• Cons? (Think of corresponding VM scheme)

- External fragmentation

12 / 38

Strawman: contiguous allocation

• “Extent-based”: allocate files like segmentedmemory
- When creating a file, make the user pre-specify its length and
allocate all space at once

- Inode contents: location and size

• Example: IBM OS/360
• Pros?

- Simple, fast access, both sequential and random

• Cons? (Think of corresponding VM scheme)
- External fragmentation

12 / 38

Strawman #2: Linked files

• Basically a linked list on disk.
- Keep a linked list of all free blocks
- Inode contents: a pointer to file’s first block
- In each block, keep a pointer to the next one

• Examples (sort-of): Alto, TOPS-10, DOS FAT
• Pros?

- Easy dynamic growth & sequential access, no fragmentation

• Cons?

- Linked lists on disk a bad idea because of access times
- Random very slow (e.g., traverse whole file to find last block)
- Pointers take up room in block, skewing alignment

13 / 38

Strawman #2: Linked files

• Basically a linked list on disk.
- Keep a linked list of all free blocks
- Inode contents: a pointer to file’s first block
- In each block, keep a pointer to the next one

• Examples (sort-of): Alto, TOPS-10, DOS FAT
• Pros?

- Easy dynamic growth & sequential access, no fragmentation
• Cons?

- Linked lists on disk a bad idea because of access times
- Random very slow (e.g., traverse whole file to find last block)
- Pointers take up room in block, skewing alignment

13 / 38

Example: DOS FS (simplified)

• Linked files with key optimization: puts links in fixed-size
“file allocation table” (FAT) rather than in the blocks.

Directory (5)
a: 6
b: 2

FAT (16-bit entries)

free0
eof1
12
eof3
34
eof5
46
. . .

6
file a

4 3

2
file b

1

• Still do pointer chasing, but can cache entire FAT so can be
cheap compared to disk access

14 / 38

FAT discussion

• Entry size = 16 bits
- What’s the maximum size of the FAT?

65,536 entries

- Given a 512 byte block, what’s the maximum size of FS?

32 MiB

- One solution: go to bigger blocks. Pros? Cons?

• Space overhead of FAT is trivial:
- 2 bytes / 512 byte block =∼ 0.4% (Compare to Unix)

• Reliability: how to protect against errors?
- Create duplicate copies of FAT on disk
- State duplication a very common theme in reliability

• Bootstrapping: where is root directory?

- Fixed location on disk:

15 / 38

FAT discussion

• Entry size = 16 bits
- What’s the maximum size of the FAT? 65,536 entries
- Given a 512 byte block, what’s the maximum size of FS? 32 MiB
- One solution: go to bigger blocks. Pros? Cons?

• Space overhead of FAT is trivial:
- 2 bytes / 512 byte block =∼ 0.4% (Compare to Unix)

• Reliability: how to protect against errors?
- Create duplicate copies of FAT on disk
- State duplication a very common theme in reliability

• Bootstrapping: where is root directory?

- Fixed location on disk:

15 / 38

Another approach: Indexed files

• Each file has an array holding all of its block pointers
- Just like a page table, so will have similar issues
- Max file size fixed by array’s size (static or dynamic?)
- Allocate array to hold file’s block pointers on file creation
- Allocate actual blocks on demand using free list

• Pros?

- Both sequential and random access easy

• Cons?

- Mapping table requires large chunk of contiguous space
. . .Same problemwe were trying to solve initially

16 / 38

Another approach: Indexed files

• Each file has an array holding all of its block pointers
- Just like a page table, so will have similar issues
- Max file size fixed by array’s size (static or dynamic?)
- Allocate array to hold file’s block pointers on file creation
- Allocate actual blocks on demand using free list

• Pros?
- Both sequential and random access easy

• Cons?
- Mapping table requires large chunk of contiguous space
. . .Same problemwe were trying to solve initially

16 / 38

Indexed files

• Issues same as in page tables

- Large possible file size = lots of unused entries
- Large actual size? table needs large contiguous disk chunk

• Solve identically: small regions with index array, this array
with another array, . . . Downside?

17 / 38

Multi-level indexed files (old BSD FS)

• Solve problem of first block access slow
• inode = 14 block pointers + “stu�”

18 / 38

Old BSD FS discussion

• Pros:
- Simple, easy to build, fast access to small files
- Maximum file length fixed, but large.

• Cons:
- What is the worst case # of accesses?
- What is the worst-case space overhead? (e.g., 13 block file)

• An empirical problem:
- Because you allocate blocks by taking them o� unordered freelist,
metadata and data get strewn across disk

19 / 38

More about inodes

• Inodes are stored in a fixed-size array
- Size of array fixed when disk is initialized; can’t be changed
- Lives in known location, originally at one side of disk:

- Now is smeared across it (why?)

- The index of an inode in the inode array called an i-number
- Internally, the OS refers to files by inumber
- When file is opened, inode brought in memory
- Written back whenmodified and file closed or time elapses

20 / 38

Directories

• Problem:
- “Spend all day generating data, come back the next morning, want
to use it.” – F. Corbato, on why files/dirs invented

• Approach 0: Users remember where on disk their files are
- E.g., like remembering your social security or bank account #

• Yuck. People want human digestible names
- We use directories to map names to file blocks

• Next: What is in a directory and why?

21 / 38

A short history of directories

• Approach 1: Single directory for entire system
- Put directory at known location on disk
- Directory contains 〈name, inumber〉 pairs
- If one user uses a name, no one else can
- Many ancient personal computers work this way

• Approach 2: Single directory for each user
- Still clumsy, and ls on 10,000 files is a real pain

• Approach 3: Hierarchical name spaces
- Allow directory to map names to files or other dirs
- File system forms a tree (or graph, if links allowed)
- Large name spaces tend to be hierarchical (ip addresses, domain
names, scoping in programming languages, etc.)

22 / 38

Hierarchical Unix

• Used since CTSS (1960s)
- Unix picked up and used really nicely

• Directories stored on disk just like regular files
- Special inode type byte set to directory

- User’s can read just like any other file

- Only special syscalls can write (why?)

- Inodes at fixed disk location

- File pointed to by the index may be
another directory

- Makes FS into hierarchical tree (what
needed to make a DAG?)

<name,inode#>
<afs,1021>
<tmp,1020>
<bin,1022>

<cdrom,4123>
<dev,1001>

<sbin,1011>
...

• Simple, plus speeding up file ops speeds up dir ops!

23 / 38

Namingmagic

• Bootstrapping: Where do you start looking?
- Root directory always inode #2 (0 and 1 historically reserved)

• Special names:
- Root directory: “/”
- Current directory: “.”
- Parent directory: “..”

• Some special names are provided by shell, not FS:
- User’s home directory: “∼”
- Globbing: “foo.*” expands to all files starting “foo.”

• Using the given names, only need two operations to navigate
the entire name space:
- cd name: move into (change context to) directory name
- ls: enumerate all names in current directory (context)

24 / 38

Unix example: /a/b/c.c

25 / 38

Default context: working directory

• Cumbersome to constantly specify full path names
- In Unix, each process has a “current working directory” (cwd)
- File names not beginning with “/” are assumed to be relative to
cwd; otherwise translation happens as before

- Editorial: root, cwd should be regular fds (like stdin, stdout, . . .)
with openat syscall instead of open

• Shells track a default list of active contexts
- A “search path” for programs you run
- Given a search path A : B : C, a shell will check in A, then check in B,
then check in C

- Can escape using explicit paths: “./foo”

• Example of locality

26 / 38

Hard and so� links (synonyms)

• More than one dir entry can refer to a given file
- Unix stores count of pointers
(“hard links”) to inode

- Tomake: “ln foo bar” creates a
synonym (bar) for file foo

inode #31279
refcount = 2

foo bar

• So�/symbolic links = synonyms for names
- Point to a file (or dir) name, but object can be deleted from
underneath it (or never even exist).

- Unix implements like directories: inode has special
“symlink” bit set and contains name of link target

ln -s /bar baz
"/bar"
refcount = 1baz

- When the file system encounters a symbolic link it automatically
translates it (if possible).

27 / 38

Case study: speeding up FS

• Original Unix FS: Simple and elegant:

• Components:
- Data blocks
- Inodes (directories represented as files)
- Hard links
- Superblock. (specifies number of blks in FS, counts of max # of
files, pointer to head of free list)

• Problem: slow
- Only gets 20Kb/sec (2% of disk maximum) even for sequential disk
transfers!

28 / 38

A plethora of performance costs

• Blocks too small (512 bytes)
- File index too large
- Toomany layers of mapping indirection
- Transfer rate low (get one block at time)

• Poor clustering of related objects:
- Consecutive file blocks not close together
- Inodes far from data blocks
- Inodes for directory not close together
- Poor enumeration performance: e.g., “ls”, “grep foo *.c”

• Usability problems
- 14-character file names a pain
- Can’t atomically update file in crash-proof way

• Next: how FFS fixes these (to a degree) [McKusic]
29 / 38

https://cs.uwaterloo.ca/~mashti/cs350/ffs.pdf

Problem: Internal fragmentation

• Block size was too small in Unix FS
• Why not just make block size bigger?

Block size space wasted file bandwidth
512 6.9% 2.6%
1024 11.8% 3.3%
2048 22.4% 6.4%
4096 45.6% 12.0%
1MB 99.0% 97.2%

• Bigger block increases bandwidth, but how to deal with
wastage (“internal fragmentation”)?
- Use idea frommalloc: split unused portion.

30 / 38

Solution: fragments

• BSD FFS:
- Has large block size (4096 or 8192)
- Allow large blocks to be chopped into small ones (“fragments”)
- Used for little files and pieces at the ends of files

• Best way to eliminate internal fragmentation?
- Variable sized splits of course
- Why does FFS use fixed-sized fragments (1024, 2048)?

31 / 38

Clustering related objects in FFS

• Group sets of consecutive cylinders into “cylinder groups”

- Key: can access any block in a cylinder without performing a seek.
Next fastest place is adjacent cylinder.

- Tries to put everything related in same cylinder group
- Tries to put everything not related in di�erent group

32 / 38

Clustering in FFS

• Tries to put sequential blocks in adjacent sectors
- (Access one block, probably access next)

• Tries to keep inode in same cylinder as file data:
- (If you look at inode, most likely will look at data too)

• Tries to keep all inodes in a dir in same cylinder group
- Access one name, frequently access many, e.g., “ls -l”

33 / 38

What does disk layout look like?

• Each cylinder group basically a mini-Unix file system:

superblocks

bookkeeping

cylinder
groups

inodes data blocks

information

• How how to ensure there’s space for related stu�?
- Place di�erent directories in di�erent cylinder groups
- Keep a “free space reserve” so can allocate near existing things
- When file grows too big (1MB) send its remainder to di�erent
cylinder group.

34 / 38

Finding space for related objs

• Old Unix (& DOS): Linked list of free blocks
- Just take a block o� of the head. Easy.

- Bad: free list gets jumbled over time. Finding adjacent blocks hard
and slow

• FFS: switch to bit-map of free blocks
- 1010101111111000001111111000101100
- Easier to find contiguous blocks.
- Small, so usually keep entire thing in memory
- Time to find free block increases if fewer free blocks

35 / 38

Using a bitmap

• Usually keep entire bitmap in memory:
- 4G disk / 4K byte blocks. How big is map?

• Allocate block close to block x?
- Check for blocks near bmap[x/32]
- If disk almost empty, will likely find one near
- As disk becomes full, search becomes more expensive and less
e�ective

• Trade space for time (search time, file access time)
• Keep a reserve (e.g, 10%) of disk always free, ideally
scattered across disk
- Don’t tell users (df can get to 110% full)
- Only root can allocate blocks once FS 100% full
- With 10% free, can almost always find one of them free

36 / 38

So what did we gain?

• Performance improvements:
- Able to get 20-40% of disk bandwidth for large files
- 10-20x original Unix file system!
- Better small file performance (why?)

• Is this the best we can do? No.
• Block based rather than extent based

- Could have named contiguous blocks with single pointer and
length (Linux ext2fs, XFS)

• Writes of metadata done synchronously
- Really hurts small file performance
- Make asynchronous with write-ordering (“so� updates”) or
logging/journaling. . . more next lecture

- Play with semantics (/tmp file systems)

37 / 38

Other hacks

• Obvious:
- Big file cache

• Fact: no rotation delay if get whole track.
- How to use?

• Fact: transfer cost negligible.
- Recall: Can get 50x the data for only∼3%more overhead
- 1 sector: 5ms + 4ms + 5µs (≈ 512 B/(100 MB/s))≈ 9ms
- 50 sectors: 5ms + 4ms + .25ms = 9.25ms
- How to use?

• Fact: if transfer huge, seek + rotation negligible
- LFS: Hoard data, write out MB at a time

• Next lecture:
- FFS in more detail
- More advanced, modern file systems

38 / 38

http://www.stanford.edu/~ouster/cgi-bin/papers/lfs.pdf

