
Outline

1 FFS in more detail

2 Crash recoverability

3 So� updates

4 Journaling

1 / 42



Review: FFS background

• 1980s improvement to original Unix FS, which had:
- 512-byte blocks
- Free blocks in linked list
- All inodes at beginning of disk
- Low throughput: 512 bytes per average seek time

• Unix FS performance problems:
- Transfers only 512 bytes per disk access
- Eventually random allocation→ 512 bytes / disk seek
- Inodes far from directory and file data
- Within directory, inodes far from each other

• Also had some usability problems:
- 14-character file names a pain
- Can’t atomically update file in crash-proof way

2 / 42



Review: FFS [McKusic] basics

• Change block size to at least 4K
- To avoid wasting space, use “fragments” for ends of files

• Cylinder groups spread inodes around disk
• Bitmaps replace free list
• FS reserves space to improve allocation

- Tunable parameter, default 10%
- Only superuser can use space when over 90% full

• Usability improvements:
- File names up to 255 characters
- Atomic rename system call
- Symbolic links assign one file name to another

3 / 42

https://cs.uwaterloo.ca/~mashti/cs350/ffs.pdf


Review: FFS disk layout

superblocks

bookkeeping

cylinder
groups

inodes data blocks

information

• Each cylinder group has its own:
- Superblock
- Bookkeeping information
- Set of inodes
- Data/directory blocks

4 / 42



Superblock

• Contains file system parameters
- Disk characteristics, block size, CG info
- Information necessary to locate inode given i-number

• Replicated once per cylinder group
- At shi�ing o�sets, so as to spanmultiple platters
- Contains magic number 0x011954 to find replicas if 1st superblock
dies (Kirk McKusick’s birthday?)

• Contains non-replicated “summary information”
- # blocks, fragments, inodes, directories in FS
- Flag stating if FS was cleanly unmounted

5 / 42



Bookkeeping information

• Blockmap
- Bit map of available fragments
- Used for allocating new blocks/fragments

• Summary info within CG
- # free inodes, blocks/frags, files, directories
- Used when picking cylinder group fromwhich to allocate

• # free blocks by rotational position (8 positions)
- Was reasonable in 1980s when disks weren’t commonly zoned
- Back then OS could do stu� to minimize rotational delay

6 / 42



Inodes and data blocks

. . .

data

data

data

data

name
i-number

...

contents

directory

...

inode

...

indirect
block

...
double indir
indirect ptr

...

metadata

...

...

data ptr
data ptr

data ptr
data ptr

• Each CG has fixed # of inodes (default one per 2K data)
• Each inodemaps o�set→ disk block for one file
• An inode also contains metadata for its file

- permissions, access/modification/change times, link count, . . .
7 / 42



Inode allocation

• Each file or directory created requires a new inode
• New file? Put inode in same CG as directory if possible
• New directory? Use di�erent CG from parent

- Consider CGs with greater than average # free inodes
- Chose CG with smallest # directories

• Within CG, inodes allocated randomly (next free)
- Would like related inodes as close as possible
- OK, because one CG doesn’t have that many inodes
- All inodes in CG can be read and cached with small # of reads

8 / 42



Fragment allocation

• Allocate space when user writes beyond end of file
• Want last block to be a fragment if not full-size

- If already a fragment, may contain space for write – done
- Else, must deallocate any existing fragment, allocate new

• If no appropriate free fragments, break full block
• Problem: Slow for many small writes

- May have to keepmoving end of file around

• (Partial) soution: new stat struct field st_blksize

- Tells applications file system block size
- stdio library can bu�er this much data

9 / 42



Block allocation

• Try to optimize for sequential access
- If available, use rotationally close block in same cylinder (obsolete)
- Otherwise, use block in same CG
- If CG totally full, find other CG with quadratic hashing
i.e., if CG #n is full, try n+ 12,n+ 22,n+ 32, . . . (mod #CGs)

- Otherwise, search all CGs for some free space

• Problem: Don’t want one file filling up whole CG
- Otherwise other inodes will have data far away

• Solution: Break big files over many CGs
- But large extents in each CGs, so sequential access doesn’t require
many seeks

- How big should extents be?

- Extent transfer time should bemuch greater than seek time

10 / 42



Block allocation

• Try to optimize for sequential access
- If available, use rotationally close block in same cylinder (obsolete)
- Otherwise, use block in same CG
- If CG totally full, find other CG with quadratic hashing
i.e., if CG #n is full, try n+ 12,n+ 22,n+ 32, . . . (mod #CGs)

- Otherwise, search all CGs for some free space

• Problem: Don’t want one file filling up whole CG
- Otherwise other inodes will have data far away

• Solution: Break big files over many CGs
- But large extents in each CGs, so sequential access doesn’t require
many seeks

- How big should extents be?
- Extent transfer time should bemuch greater than seek time

10 / 42



Directories

• Directories have normal inodes with di�erent type bits
• Contents considered as 512-byte chunks
• Each chunk has direct structure(s) with:

- 32-bit inumber
- 16-bit size of directory entry
- 8-bit file type (added later)
- 8-bit length of file name

• Coalesce when deleting
- If first direct in chunk deleted, set inumber = 0

• Periodically compact directory chunks
- But can never move directory entries across chunks
- Recall only 512-byte sector writes atomic w. power failure

11 / 42



Updating FFS for the 90s

• No longer wanted to assume rotational delay
- With disk caches, want data contiguously allocated

• Solution: Cluster writes
- FS delays writing a block back to get more blocks
- Accumulates blocks into 64KiB clusters, written at once

• Allocation of clusters similar to fragments/blocks
- Summary info
- Cluster map has one bit for each 64K if all free

• Also read in 64K chunks when doing read ahead

12 / 42



Outline

1 FFS in more detail

2 Crash recoverability

3 So� updates

4 Journaling

13 / 42



Fixing corruption – fsck

• Must run FS check (fsck) program a�er crash
• Summary info usually bad a�er crash

- Scan to check free block map, block/inode counts

• Systemmay have corrupt inodes (not simple crash)
- Bad block numbers, cross-allocation, etc.
- Do sanity check, clear inodes containing garbage

• Fields in inodes may be wrong
- Count number of directory entries to verify link count, if no entries
but count 6= 0, move to lost+found

- Make sure size and used data counts match blocks

• Directories may be bad
- Holes illegal, . and ..must be valid, file names must be unique
- All directories must be reachable

14 / 42



Crash recovery permeates FS code

• Have to ensure fsck can recover file system
• Example: Suppose all data written asynchronously

- Any subset of data structures may be updated before a crash

• Delete/truncate a file, append to other file, crash
- New file may reuse block from old
- Old inodemay not be updated
- Cross-allocation!
- O�en inode with older mtime wrong, but can’t be sure

• Append to file, allocate indirect block, crash
- Inode points to indirect block
- But indirect block may contain garbage!

15 / 42



Sidenote: kernel-internal disk write routines

• BSD has three ways of writing a block to disk
1. bdwrite – delayed write

- Marks cached copy of block as dirty, does not write it
- Will get written back in background within 30 seconds
- Used if block likely to be modified again soon

2. bawrite – asynchronous write
- Start write but return immediately before it completes
- E.g., use when appending to file and block is full

3. bwrite – synchronous write
- Start write, sleep and do not return until safely on disk

16 / 42



Ordering of updates

• Must be careful about order of updates
- Write new inode to disk before directory entry
- Remove directory name before deallocating inode
- Write cleared inode to disk before updating CG free map

• Solution: Manymetadata updates synchronous (bwrite)
- Doing one write at a time ensures ordering
- Of course, this hurts performance
- E.g., untar much slower than disk bandwidth

• Note: Cannot update bu�ers on the disk queue
- E.g., say youmake two updates to same directory block
- But crash recovery requires first to be synchronous
- Must wait for first write to complete before doing second
- Makes bawrite as slow as bwrite for many updates to same block

17 / 42



Performance vs. consistency

• FFS crash recoverability comes at huge cost
- Makes tasks such as untar easily 10-20 times slower
- All because youmight lose power or reboot at any time

• Even slowing normal case does not make recovery fast
- If fsck takes oneminute, then disks get 10× bigger, then 100× . . .

• One solution: battery-backed RAM
- Expensive (requires specialized hardware)
- O�en don’t learn battery has died until too late
- A pain if computer dies (can’t just move disk)
- If OS bug causes crash, RAMmight be garbage

• Better solution: Advanced file system techniques
- Topic of rest of lecture

18 / 42



Outline

1 FFS in more detail

2 Crash recoverability

3 So� updates

4 Journaling

19 / 42



First attempt: Ordered updates

• Want to avoid crashing a�er “bad” subset of writes
• Must follow 3 rules in ordering updates [Ganger]:
1. Never write pointer before initializing the structure it points to
2. Never reuse a resource before nullifying all pointers to it
3. Never clear last pointer to live resource before setting new one

• If you do this, file systemwill be recoverable
• Moreover, can recover quickly

- Might leak free disk space, but otherwise correct
- So start running a�er reboot, scavenge for space in background

• How to achieve?
- Keep a partial order on bu�ered blocks

20 / 42

https://cs.uwaterloo.ca/~mashti/cs350/softupdates.pdf


Ordered updates (continued)

• Example: Create file A
- Block X contains an inode
- Block Y contains a directory block
- Create file A in inode block X, dir block Y
- By rule #1, must write X before writing Y

• We say Y → X, pronounced “Y depends on X”
- Means Y cannot be written before X is written
- X is called the dependee, Y the depender

• Can delay both writes, so long as order preserved
- Say you create a second file B in blocks X and Y
- Only have to write each out once for both creates

21 / 42



Problem: Cyclic dependencies

• Suppose you create file A, unlink file B, but delay writes
- Both files in same directory block & inode block

• Can’t write directory until A’s inode initialized (rule #1)
- Otherwise, a�er crash directory will point to bogus inode
- Worse yet, same inode #might be re-allocated
- So could end up with file name A being an unrelated file

• Can’t write inode block until B’s directory entry cleared (rule #2)
- Otherwise, B could end up with too small a link count
- File could be deleted while links to it still exist

• Otherwise, fsck has to be slow
- Check every directory entry and every inode link count

22 / 42



Cyclic dependencies illustrated

inode block

inode #4

inode #5

inode #6

inode #7

directory block

〈–,#0〉

〈B,#5〉

〈C,#7〉

Original organization

in use

free

original

modified

inode block

inode #4

inode #5

inode #6

inode #7

directory block

〈A,#4〉

〈B,#5〉

〈C,#7〉

Create file A

inode block

inode #4

inode #5

inode #6

inode #7

directory block

〈A,#4〉

〈–,#5〉

〈C,#7〉

Remove file B
23 / 42



More problems

• Crashmight occur between ordered but related writes
- E.g., summary information wrong a�er block freed

• Block aging
- Block that always has dependency will never get written back

• Solution: So� updates [Ganger]
- Write blocks in any order
- But keep track of dependencies
- When writing a block, temporarily roll back any changes you can’t
yet commit to disk

- I.e., can’t write block with any arrows pointing to dependees
. . .but can temporarily undo whatever change requires the arrow

24 / 42

https://cs.uwaterloo.ca/~mashti/cs350/softupdates.pdf


Breaking dependencies with rollback

Bu�er cache
inode block

inode #4

inode #5

inode #6

inode #7

directory block

〈A,#4〉

〈–,#0〉

〈C,#7〉

Disk
inode block

inode #4

inode #5

inode #6

inode #7

directory block

〈–,#0〉

〈B,#5〉

〈C,#7〉

• Deleted Created file A and deleted file B
• Now say we decide to write directory block. . .
• Can’t write file name A to disk—has dependee

25 / 42



Breaking dependencies with rollback

Bu�er cache
inode block

inode #4

inode #5

inode #6

inode #7

directory block

〈A,#4〉

〈–,#0〉

〈C,#7〉

Disk
inode block

inode #4

inode #5

inode #6

inode #7

directory block

〈–,#0〉

〈B,#5〉

〈C,#7〉

〈–,#0〉

• Undo file A before writing dir block to disk
- Even though we just wrote it, directory block still dirty

• But now inode block has no dependees
- Can safely write inode block to disk as-is. . .

25 / 42



Breaking dependencies with rollback

Bu�er cache
inode block

inode #4

inode #5

inode #6

inode #7

directory block

〈A,#4〉

〈–,#0〉

〈C,#7〉

Disk
inode block

inode #4

inode #5

inode #6

inode #7

directory block

〈–,#0〉

〈B,#5〉

〈C,#7〉

〈–,#0〉inode #5

• Now inode block clean (same inmemory as on disk)
• But have to write directory block a second time.. .

25 / 42



Breaking dependencies with rollback

Bu�er cache
inode block

inode #4

inode #5

inode #6

inode #7

directory block

〈A,#4〉

〈–,#0〉

〈C,#7〉

Disk
inode block

inode #4

inode #5

inode #6

inode #7

directory block

〈–,#0〉

〈B,#5〉

〈C,#7〉

〈–,#0〉inode #5

〈A,#4〉

• All data stably on disk
• Crash at any point would have been safe

25 / 42



So� updates

• Structure for each updated field or pointer, contains:
- old value
- new value
- list of updates on which this update depends (dependees)

• Can write blocks in any order
- But must temporarily undo updates with pending dependencies
- Must lock rolled-back version so applications don’t see it
- Choose ordering based on disk arm scheduling

• Some dependencies better handled by postponing
in-memory updates
- E.g., when freeing block (e.g., because file truncated), just mark
block free in bitmap a�er block pointer cleared on disk

26 / 42



Simple example

• Say you create a zero-length file A
• Depender: Directory entry for A

- Can’t be written untill dependees on disk

• Dependees:
- Inode – must be initialized before dir entry written
- Bitmap –must mark inode allocated before dir entry written

• Old value: empty directory entry
• New value: 〈filename A, inode#〉
• Can write directory block to disk any time

- Must substitute old value until inode & bitmap updated on disk
- Once dir block on disk contains A, file fully created
- Crash before A on disk, worst case might leak the inode

27 / 42



Operations requiring so� updates (1)

1. Block allocation
- Must write the disk block, the free map, & a pointer
- Disk block & free mapmust be written before pointer
- Use Undo/redo on pointer (& possibly file size)

2. Block deallocation
- Must write the cleared pointer & free map
- Just update free map a�er pointer written to disk
- Or just immediately update free map if pointer not on disk

• Say you quickly append block to file then truncate
- You will know pointer to block not written because of the allocated
dependency structure

- So both operations together require no disk I/O!

28 / 42



Operations requiring so� updates (2)

3. Link addition (see simple example)
- Must write the directory entry, inode, & free map (if new inode)
- Inode and free mapmust be written before dir entry
- Use undo/redo on i# in dir entry (ignore entries w. i# 0)

4. Link removal
- Must write directory entry, inode & free map (if nlinks==0)
- Must decrement nlinks only a�er pointer cleared
- Clear directory entry immediately
- Decrement in-memory nlinks once pointer written
- If directory entry was never written, decrement immediately
(again will know by presence of dependency structure)

• Note: Quick create/delete requires no disk I/O

29 / 42



So� update issues

• fsync – sycall to flush file changes to disk
- Must also flush directory entries, parent directories, etc.

• unmount – flush all changes to disk on shutdown
- Some bu�ers must be flushedmultiple times to get clean

• Deleting large directory trees frighteningly fast
- unlink syscall returns even if inode/indir block not cached!
- Dependencies allocated faster than blocks written
- Cap # dependencies allocated to avoid exhausting memory

• Useless write-backs
- Syncer flushes dirty bu�ers to disk every 30 seconds
- Writing all at once means many dependencies unsatisfied
- Fix syncer to write blocks one at a time
- Fix LRU bu�er eviction to know about dependencies

30 / 42



So� updates fsck

• Split into foreground and background parts
• Foregroundmust be done before remounting FS

- Need to make sure per-cylinder summary info makes sense
- Recompute free block/inode counts from bitmaps – very fast
- Will leave FS consistent, but might leak disk space

• Background does traditional fsck operations
- Do a�er mounting to recuperate free space
- Can be using the file systemwhile this is happening
- Must be done in forground a�er a media failure

• Di�erence from traditional FFS fsck:
- May have many, many inodes with non-zero link counts
- Don’t stick them all in lost+found (unless media failure)

31 / 42



Outline

1 FFS in more detail

2 Crash recoverability

3 So� updates

4 Journaling

32 / 42



An alternative: Journaling

• Biggest crash-recovery challenge is inconsistency
- Have one logical operation (e.g., create or delete file)
- Requires multiple separate disk writes
- If only some of them happen, end up with big problems

• Most of these problematic writes are to metadata
• Idea: Use awrite-ahead log to journalmetadata

- Reserve a portion of disk for a log
- Write any metadata operation first to log, then to disk
- A�er crash/reboot, re-play the log (e�icient)
- May re-do already committed change, but won’t miss anything

33 / 42



Journaling (continued)

• Groupmultiple operations into one log entry
- E.g., clear directory entry, clear inode, update free map—
either all three will happen a�er recovery, or none

• Performance advantage:
- Log is consecutive portion of disk
- Multiple operations can be logged at disk b/w
- Safe to consider updates committed when written to log

• Example: delete directory tree
- Record all freed blocks, changed directory entries in log
- Return control to user
- Write out changed directories, bitmaps, etc. in background
(sort for good disk arm scheduling)

34 / 42



Journaling details

• Must find oldest relevant log entry
- Otherwise, redundant and slow to replay whole log

• Use checkpoints
- Once all records up to log entry N have been processed and
a�ected blocks stably committed to disk. . .

- Record N to disk either in reserved checkpoint location, or in
checkpoint log record

- Never need to go back before most recent checkpointed N

• Must also find end of log
- Typically circular bu�er; don’t play old records out of order
- Can include begin transaction/end transaction records
- Also typically have checksum in case some sectors bad

35 / 42



Case study: XFS [Sweeney]

• Main idea: Think big
- Big disks, files, large # of files, 64-bit everything
- Yet maintain very good performance

• Break disk up into Allocation Groups (AGs)
- 0.5 – 4 GB regions of disk
- New directories go in new AGs
- Within directory, inodes of files go in same AG
- Unlike cylinder groups, AGs too large to minimize seek times
- Unlike cylinder groups, no fixed # of inodes per AG

• Advantages of AGs:
- Parallelize allocation of blocks/inodes onmultiprocessor
(independent locking of di�erent free space structures)

- Can use 32-bit block pointers within AGs
(keeps data structures smaller)

36 / 42

https://cs.uwaterloo.ca/~mashti/cs350/xfs.pdf


B+-trees

t
r

p
t
r

p
t
r

p
t
r

K K K

p
t
r

p
t
r

K
V V
KK

V
p
t
r

p
t
r

K
V V
KK

V
p
t
r

p
t
r

K
V V
KK

V

p

• XFSmakes extensive use of B+-trees
- Indexed data structure stores ordered Keys & Values
- Keys must have an ordering defined on them
- Stored data in blocks for e�icient disk access

• For B+-tree with n items, all operations O(logn):
- Retrieve closest 〈key, value〉 to target key k
- Insert a new 〈key, value〉 pair
- Delete 〈key, value〉 pair

37 / 42



B+-trees continued

• See any algorithms book for details (e.g., [Cormen])
• Some operations on B-tree are complex:

- E.g., insert item into completely full B+-tree
- May require “splitting” nodes, adding new level to tree
- Would be bad to crash & leave B+tree in inconsistent state

• Journal enables atomic complex operations
- First write all changes to the log
- If crash while writing log, incomplete log record will be discarded,
and no changemade

- Otherwise, if crash while updating B+-tree, will replay entire log
record and write everything

38 / 42



B+-trees in XFS

• B+-trees are complex to implement
- But once you’ve done it, might as well use everywhere

• Use B+-trees for directories (keyed on filename hash)
- Makes large directories e�icient

• Use B+-trees for inodes
- Nomore FFS-style fixed block pointers
- Instead, B+-tree maps: file o�set→ 〈start block, # blocks〉
- Ideally file is one or small number of contiguous extents
- Allows small inodes & no indirect blocks even for huge files

• Use to find inode based on inumber
- High bits of inumber specify AG
- B+-tree in AGmaps: starting i#→ 〈block #, free-map〉
- So free inodes tracked right in leaf of B+-tree

39 / 42



More B+-trees in XFS

• Free extents tracked by two B+-trees
1. start block #→ # free blocks
2. # free blocks→ start block #

• Use journal to update both atomically & consistently
• #1 allows you to coalesce adjacent free regions
• #1 allows you to allocate near some target

- E.g., when extending file, put next block near previous one
- When first writing to file, put data near inode

• #2 allows you to do best fit allocation
- Leave large free extents for large files

40 / 42



Contiguous allocation

• Ideally want each file contiguous on disk
- Sequential file I/O should be as fast as sequential disk I/O

• But how do you know how large a file will be?
• Idea: delayed allocation

- write syscall only a�ects the bu�er cache
- Allow write into bu�ers before deciding where to place on disk
- Assign disk space only when bu�ers are flushed

• Other advantages:
- Short-lived files never need disk space allocated
- mmaped files o�en written in random order in memory, but will be
written to disk mostly contiguously

- Write clustering: find other nearby stu� to write to disk

41 / 42



Journaling vs. so� updates

• Bothmuch better than FFS alone
• Some limitations of so� updates

- Very specific to FFS data structures (E.g., couldn’t easily add
B-trees like XFS—even directory rename not quite right)

- Metadata updates may proceed out of order (E.g., create A, create
B, crash—maybe only B exists a�er reboot)

- Still need slow background fsck to reclaim space

• Some limitations of journaling
- Disk write required for every metadata operation (whereas
create-then-delete might require no I/O with so� updates)

- Possible contention for end of log onmulti-processor
- fsyncmust sync other operations’ metadata to log, too

42 / 42


	FFS in more detail
	Crash recoverability
	Soft updates
	Journaling

