

FFS in more detail

2 Crash recoverability

3 Soft updates

4 Journaling

Review: FFS background

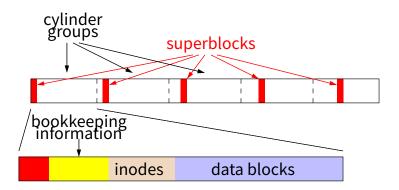
• 1980s improvement to original Unix FS, which had:

- 512-byte blocks
- Free blocks in linked list
- All inodes at beginning of disk
- Low throughput: 512 bytes per average seek time

• Unix FS performance problems:

- Transfers only 512 bytes per disk access
- Eventually random allocation \rightarrow 512 bytes / disk seek
- Inodes far from directory and file data
- Within directory, inodes far from each other

• Also had some usability problems:


- 14-character file names a pain
- Can't atomically update file in crash-proof way

Review: FFS [McKusic] basics

• Change block size to at least 4K

- To avoid wasting space, use "fragments" for ends of files
- Cylinder groups spread inodes around disk
- Bitmaps replace free list
- FS reserves space to improve allocation
 - Tunable parameter, default 10%
 - Only superuser can use space when over 90% full
- Usability improvements:
 - File names up to 255 characters
 - Atomic rename system call
 - Symbolic links assign one file name to another

Review: FFS disk layout

• Each cylinder group has its own:

- Superblock
- Bookkeeping information
- Set of inodes
- Data/directory blocks

Superblock

Contains file system parameters

- Disk characteristics, block size, CG info
- Information necessary to locate inode given i-number

Replicated once per cylinder group

- At shifting offsets, so as to span multiple platters
- Contains magic number 0x011954 to find replicas if 1st superblock dies (Kirk McKusick's birthday?)

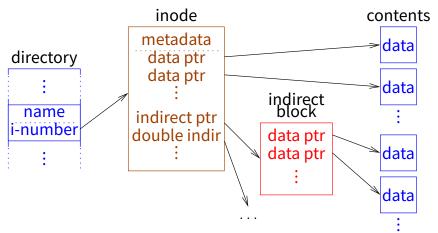
Contains non-replicated "summary information"

- # blocks, fragments, inodes, directories in FS
- Flag stating if FS was cleanly unmounted

Bookkeeping information

Block map

- Bit map of available fragments
- Used for allocating new blocks/fragments


Summary info within CG

- # free inodes, blocks/frags, files, directories
- Used when picking cylinder group from which to allocate

• # free blocks by rotational position (8 positions)

- Was reasonable in 1980s when disks weren't commonly zoned
- Back then OS could do stuff to minimize rotational delay

Inodes and data blocks

- Each CG has fixed # of inodes (default one per 2K data)
- An inode also contains metadata for its file
 - permissions, access/modification/change times, link count, ...

Inode allocation

- Each file or directory created requires a new inode
- New file? Put inode in same CG as directory if possible
- New directory? Use different CG from parent
 - Consider CGs with greater than average # free inodes
 - Chose CG with smallest # directories
- Within CG, inodes allocated randomly (next free)
 - Would like related inodes as close as possible
 - OK, because one CG doesn't have that many inodes
 - All inodes in CG can be read and cached with small # of reads

Fragment allocation

- Allocate space when user writes beyond end of file
- Want last block to be a fragment if not full-size
 - If already a fragment, may contain space for write done
 - Else, must deallocate any existing fragment, allocate new
- If no appropriate free fragments, break full block
- Problem: Slow for many small writes
 - May have to keep moving end of file around
- (Partial) soution: new stat struct field st_blksize
 - Tells applications file system block size
 - stdio library can buffer this much data

Block allocation

Try to optimize for sequential access

- If available, use rotationally close block in same cylinder (obsolete)
- Otherwise, use block in same CG
- If CG totally full, find other CG with quadratic hashing i.e., if CG #*n* is full, try $n + 1^2$, $n + 2^2$, $n + 3^2$, ... (mod #*CGs*)
- Otherwise, search all CGs for some free space
- Problem: Don't want one file filling up whole CG
 - Otherwise other inodes will have data far away
- Solution: Break big files over many CGs
 - But large extents in each CGs, so sequential access doesn't require many seeks
 - How big should extents be?

Block allocation

Try to optimize for sequential access

- If available, use rotationally close block in same cylinder (obsolete)
- Otherwise, use block in same CG
- If CG totally full, find other CG with quadratic hashing i.e., if CG #*n* is full, try $n + 1^2$, $n + 2^2$, $n + 3^2$, ... (mod #CGs)
- Otherwise, search all CGs for some free space
- Problem: Don't want one file filling up whole CG
 - Otherwise other inodes will have data far away
- Solution: Break big files over many CGs
 - But large extents in each CGs, so sequential access doesn't require many seeks
 - How big should extents be?
 - Extent transfer time should be much greater than seek time

Directories

- Directories have normal inodes with different type bits
- Contents considered as 512-byte chunks
- Each chunk has direct structure(s) with:
 - 32-bit inumber
 - 16-bit size of directory entry
 - 8-bit file type (added later)
 - 8-bit length of file name
- Coalesce when deleting
 - If first direct in chunk deleted, set inumber = 0
- Periodically compact directory chunks
 - But can never move directory entries across chunks
 - Recall only 512-byte sector writes atomic w. power failure

Updating FFS for the 90s

• No longer wanted to assume rotational delay

- With disk caches, want data contiguously allocated

• Solution: Cluster writes

- FS delays writing a block back to get more blocks
- Accumulates blocks into 64KiB clusters, written at once

Allocation of clusters similar to fragments/blocks

- Summary info
- Cluster map has one bit for each 64K if all free

Also read in 64K chunks when doing read ahead

FFS in more detail

- 2 Crash recoverability
- 3 Soft updates

4 Journaling

Fixing corruption – fsck

- Must run FS check (fsck) program after crash
- Summary info usually bad after crash
 - Scan to check free block map, block/inode counts
- System may have corrupt inodes (not simple crash)
 - Bad block numbers, cross-allocation, etc.
 - Do sanity check, clear inodes containing garbage

Fields in inodes may be wrong

- Count number of directory entries to verify link count, if no entries but count \neq 0, move to lost+found
- Make sure size and used data counts match blocks

Directories may be bad

- Holes illegal, . and . . must be valid, file names must be unique
- All directories must be reachable

Crash recovery permeates FS code

- Have to ensure fsck can recover file system
- Example: Suppose all data written asynchronously
 - Any subset of data structures may be updated before a crash
- Delete/truncate a file, append to other file, crash
 - New file may reuse block from old
 - Old inode may not be updated
 - Cross-allocation!
 - Often inode with older mtime wrong, but can't be sure
- Append to file, allocate indirect block, crash
 - Inode points to indirect block
 - But indirect block may contain garbage!

Sidenote: kernel-internal disk write routines

• BSD has three ways of writing a block to disk

- 1. bdwrite delayed write
 - Marks cached copy of block as dirty, does not write it
 - Will get written back in background within 30 seconds
 - Used if block likely to be modified again soon

2. bawrite - asynchronous write

- Start write but return immediately before it completes
- E.g., use when appending to file and block is full

3. bwrite - synchronous write

- Start write, sleep and do not return until safely on disk

Ordering of updates

Must be careful about order of updates

- Write new inode to disk before directory entry
- Remove directory name before deallocating inode
- Write cleared inode to disk before updating CG free map

• Solution: Many metadata updates synchronous (bwrite)

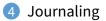
- Doing one write at a time ensures ordering
- Of course, this hurts performance
- E.g., untar much slower than disk bandwidth

Note: Cannot update buffers on the disk queue

- E.g., say you make two updates to same directory block
- But crash recovery requires first to be synchronous
- Must wait for first write to complete before doing second
- Makes bawrite as slow as bwrite for many updates to same block

Performance vs. consistency

• FFS crash recoverability comes at huge cost


- Makes tasks such as untar easily 10-20 times slower
- All because you might lose power or reboot at any time
- Even slowing normal case does not make recovery fast
 - If fsck takes one minute, then disks get 10 imes bigger, then 100 imes ...
- One solution: battery-backed RAM
 - Expensive (requires specialized hardware)
 - Often don't learn battery has died until too late
 - A pain if computer dies (can't just move disk)
 - If OS bug causes crash, RAM might be garbage
- Better solution: Advanced file system techniques
 - Topic of rest of lecture

FFS in more detail

2 Crash recoverability

3 Soft updates

First attempt: Ordered updates

- Want to avoid crashing after "bad" subset of writes
- Must follow 3 rules in ordering updates [Ganger]:
 - 1. Never write pointer before initializing the structure it points to
 - 2. Never reuse a resource before nullifying all pointers to it
 - 3. Never clear last pointer to live resource before setting new one
- If you do this, file system will be recoverable
- Moreover, can recover quickly
 - Might leak free disk space, but otherwise correct
 - So start running after reboot, scavenge for space in background
- How to achieve?
 - Keep a partial order on buffered blocks

Ordered updates (continued)

• Example: Create file A

- Block X contains an inode
- Block Y contains a directory block
- Create file A in inode block X, dir block Y
- By rule #1, must write X before writing Y
- We say $Y \rightarrow X$, pronounced "Y depends on X"
 - Means Y cannot be written before X is written
 - X is called the dependee, Y the depender
- Can delay both writes, so long as order preserved
 - Say you create a second file B in blocks X and Y
 - Only have to write each out once for both creates

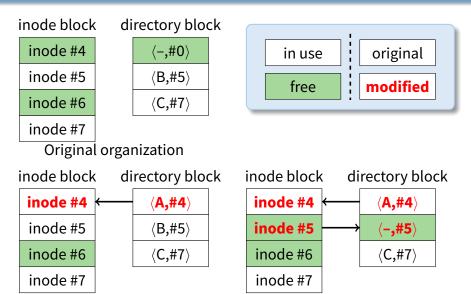
Problem: Cyclic dependencies

• Suppose you create file *A*, unlink file *B*, but delay writes

- Both files in same directory block & inode block

• Can't write directory until A's inode initialized (rule #1)

- Otherwise, after crash directory will point to bogus inode
- Worse yet, same inode # might be re-allocated
- So could end up with file name A being an unrelated file


• Can't write inode block until B's directory entry cleared (rule #2)

- Otherwise, *B* could end up with too small a link count
- File could be deleted while links to it still exist

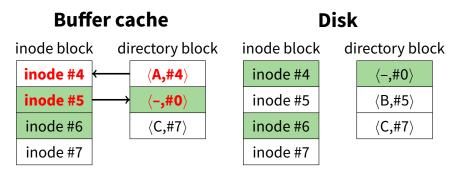
Otherwise, fsck has to be slow

- Check every directory entry and every inode link count

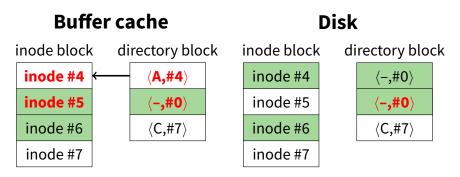
Cyclic dependencies illustrated

Create file A

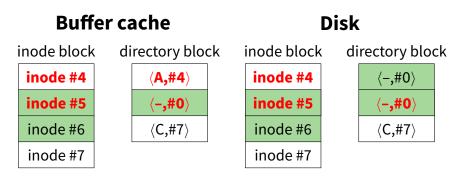
Remove file B

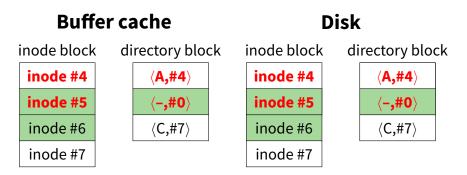

More problems

Crash might occur between ordered but related writes


- E.g., summary information wrong after block freed
- Block aging
 - Block that always has dependency will never get written back

• Solution: Soft updates [Ganger]


- Write blocks in any order
- But keep track of dependencies
- When writing a block, temporarily roll back any changes you can't yet commit to disk
- I.e., can't write block with any arrows pointing to dependees ... but can temporarily undo whatever change requires the arrow


- Deleted Created file A and deleted file B
- Now say we decide to write directory block...
- Can't write file name A to disk—has dependee

- Undo file A before writing dir block to disk
 - Even though we just wrote it, directory block still dirty
- But now inode block has no dependees
 - Can safely write inode block to disk as-is...

- Now inode block clean (same in memory as on disk)
- But have to write directory block a second time...

- All data stably on disk
- Crash at any point would have been safe

Soft updates

• Structure for each updated field or pointer, contains:

- old value
- new value
- list of updates on which this update depends (dependees)

Can write blocks in any order

- But must temporarily undo updates with pending dependencies
- Must lock rolled-back version so applications don't see it
- Choose ordering based on disk arm scheduling
- Some dependencies better handled by postponing in-memory updates
 - E.g., when freeing block (e.g., because file truncated), just mark block free in bitmap after block pointer cleared on disk

Simple example

- Say you create a zero-length file A
- Depender: Directory entry for A
 - Can't be written untill dependees on disk
- Dependees:
 - Inode must be initialized before dir entry written
 - Bitmap must mark inode allocated before dir entry written
- Old value: empty directory entry
- New value: (filename A, inode #)
- Can write directory block to disk any time
 - Must substitute old value until inode & bitmap updated on disk
 - Once dir block on disk contains A, file fully created
 - Crash before A on disk, worst case might leak the inode

Operations requiring soft updates (1)

1. Block allocation

- Must write the disk block, the free map, & a pointer
- Disk block & free map must be written before pointer
- Use Undo/redo on pointer (& possibly file size)

2. Block deallocation

- Must write the cleared pointer & free map
- Just update free map after pointer written to disk
- Or just immediately update free map if pointer not on disk
- Say you quickly append block to file then truncate
 - You will know pointer to block not written because of the allocated dependency structure
 - So both operations together require no disk I/O!

Operations requiring soft updates (2)

3. Link addition (see simple example)

- Must write the directory entry, inode, & free map (if new inode)
- Inode and free map must be written before dir entry
- Use undo/redo on i# in dir entry (ignore entries w. i# 0)

4. Link removal

- Must write directory entry, inode & free map (if nlinks==0)
- Must decrement nlinks only after pointer cleared
- Clear directory entry immediately
- Decrement in-memory nlinks once pointer written
- If directory entry was never written, decrement immediately (again will know by presence of dependency structure)

Note: Quick create/delete requires no disk I/O

Soft update issues

fsync – sycall to flush file changes to disk

- Must also flush directory entries, parent directories, etc.

• *unmount* – flush all changes to disk on shutdown

- Some buffers must be flushed multiple times to get clean
- Deleting large directory trees frighteningly fast
 - unlink syscall returns even if inode/indir block not cached!
 - Dependencies allocated faster than blocks written
 - Cap # dependencies allocated to avoid exhausting memory
- Useless write-backs
 - Syncer flushes dirty buffers to disk every 30 seconds
 - Writing all at once means many dependencies unsatisfied
 - Fix syncer to write blocks one at a time
 - Fix LRU buffer eviction to know about dependencies

Soft updates fsck

- Split into foreground and background parts
- Foreground must be done before remounting FS
 - Need to make sure per-cylinder summary info makes sense
 - Recompute free block/inode counts from bitmaps very fast
 - Will leave FS consistent, but might leak disk space
- Background does traditional fsck operations
 - Do after mounting to recuperate free space
 - Can be using the file system while this is happening
 - Must be done in forground after a media failure
- Difference from traditional FFS fsck:
 - May have many, many inodes with non-zero link counts
 - Don't stick them all in lost+found (unless media failure)

FFS in more detail

2 Crash recoverability

3 Soft updates

4 Journaling

An alternative: Journaling

• Biggest crash-recovery challenge is inconsistency

- Have one logical operation (e.g., create or delete file)
- Requires multiple separate disk writes
- If only some of them happen, end up with big problems
- Most of these problematic writes are to metadata
- Idea: Use a write-ahead log to journal metadata
 - Reserve a portion of disk for a log
 - Write any metadata operation first to log, then to disk
 - After crash/reboot, re-play the log (efficient)
 - May re-do already committed change, but won't miss anything

Journaling (continued)

• Group multiple operations into one log entry

- E.g., clear directory entry, clear inode, update free map either all three will happen after recovery, or none

Performance advantage:

- Log is consecutive portion of disk
- Multiple operations can be logged at disk b/w
- Safe to consider updates committed when written to log

• Example: delete directory tree

- Record all freed blocks, changed directory entries in log
- Return control to user
- Write out changed directories, bitmaps, etc. in background (sort for good disk arm scheduling)

Journaling details

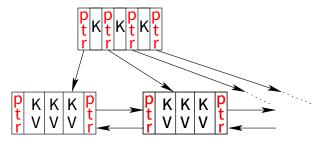
• Must find oldest relevant log entry

- Otherwise, redundant and slow to replay whole log

Use checkpoints

- Once all records up to log entry *N* have been processed and affected blocks stably committed to disk...
- Record *N* to disk either in reserved checkpoint location, or in checkpoint log record
- Never need to go back before most recent checkpointed *N*
- Must also find end of log
 - Typically circular buffer; don't play old records out of order
 - Can include begin transaction/end transaction records
 - Also typically have checksum in case some sectors bad

Case study: XFS [Sweeney]


Main idea: Think big

- Big disks, files, large # of files, 64-bit everything
- Yet maintain very good performance
- Break disk up into Allocation Groups (AGs)
 - 0.5 4 GB regions of disk
 - New directories go in new AGs
 - Within directory, inodes of files go in same AG
 - Unlike cylinder groups, AGs too large to minimize seek times
 - Unlike cylinder groups, no fixed # of inodes per AG

• Advantages of AGs:

- Parallelize allocation of blocks/inodes on multiprocessor (independent locking of different free space structures)
- Can use 32-bit block pointers within AGs (keeps data structures smaller)

B+-trees

- XFS makes extensive use of B+-trees
 - Indexed data structure stores ordered Keys & Values
 - Keys must have an ordering defined on them
 - Stored data in blocks for efficient disk access
- For B+-tree with *n* items, all operations $O(\log n)$:
 - Retrieve closest $\langle key, value \rangle$ to target key k
 - Insert a new (key, value) pair
 - Delete (key, value) pair

B+-trees continued

- See any algorithms book for details (e.g., [Cormen])
- Some operations on B-tree are complex:
 - E.g., insert item into completely full B+-tree
 - May require "splitting" nodes, adding new level to tree
 - Would be bad to crash & leave B+tree in inconsistent state
- Journal enables atomic complex operations
 - First write all changes to the log
 - If crash while writing log, incomplete log record will be discarded, and no change made
 - Otherwise, if crash while updating B+-tree, will replay entire log record and write everything

B+-trees in XFS

B+-trees are complex to implement

- But once you've done it, might as well use everywhere

• Use B+-trees for directories (keyed on filename hash)

- Makes large directories efficient

Use B+-trees for inodes

- No more FFS-style fixed block pointers
- Instead, B+-tree maps: file offset \rightarrow $\langle start block, \# blocks \rangle$
- Ideally file is one or small number of contiguous extents
- Allows small inodes & no indirect blocks even for huge files

Use to find inode based on inumber

- High bits of inumber specify AG
- B+-tree in AG maps: starting i# \rightarrow $\langle block$ #, free-map \rangle
- So free inodes tracked right in leaf of B+-tree

More B+-trees in XFS

Free extents tracked by two B+-trees

- 1. start block $\# \rightarrow \#$ free blocks
- 2. # free blocks \rightarrow start block #
- Use journal to update both atomically & consistently
- #1 allows you to coalesce adjacent free regions
- #1 allows you to allocate near some target
 - E.g., when extending file, put next block near previous one
 - When first writing to file, put data near inode
- #2 allows you to do best fit allocation
 - Leave large free extents for large files

Contiguous allocation

• Ideally want each file contiguous on disk

- Sequential file I/O should be as fast as sequential disk I/O
- But how do you know how large a file will be?
- Idea: delayed allocation
 - write syscall only affects the buffer cache
 - Allow write into buffers before deciding where to place on disk
 - Assign disk space only when buffers are flushed

• Other advantages:

- Short-lived files never need disk space allocated
- mmaped files often written in random order in memory, but will be written to disk mostly contiguously
- Write clustering: find other nearby stuff to write to disk

Journaling vs. soft updates

Both much better than FFS alone

Some limitations of soft updates

- Very specific to FFS data structures (E.g., couldn't easily add B-trees like XFS—even directory rename not quite right)
- Metadata updates may proceed out of order (E.g., create *A*, create *B*, crash—maybe only *B* exists after reboot)
- Still need slow background fsck to reclaim space

Some limitations of journaling

- Disk write required for every metadata operation (whereas create-then-delete might require no I/O with soft updates)
- Possible contention for end of log on multi-processor
- fsync must sync other operations' metadata to log, too