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Abstract

Studies of image motion typically address motion categories
on a case-by-case basis. Examples include a moving point,
a moving contour, or a 2D optical flow field. The typical
assumption made in these studies is that there is a unique
velocity at each moving point in the image. In this paper
we relax this assumption. We introduce a broader set of
motion categories in which the set of motions at a moving
point can be 0-D, 1-D, or 2-D. We consider one new motion
category in detail, which we call optical snow. This motion
category occurs, for example, when an observer translates
relative to a massively cluttered scene. Examples include
the motion seen by an observer moving through bushes, or
falling snow seen by a stationary observer. Optical snow
is characterized by a 1-D set of velocities at each moving
point and, as such, it cannot be analyzed using a classical
computational method such as optical flow. We introduce
a technique for analyzing optical snow which is based on
a bow tie signature of the motion in the frequency domain.
We demonstrate the effectiveness of the technique using both
synthetic and real image sequences.

1 Introduction

This paper addresses categorical properties of time varying
images in which the variation is due to motion. We consider
motion to be changes in the spatial position of image tokens
over time. Image tokens include raw pixel intensities, as
well as abstract entities such as the output of edge and line
detectors.

Traditional models of image motion address the case of a
moving point, a moving curve, or a flow over a region. Such
motions are distinguished from each other by the dimension
of the set of moving image points: A single point is a 0-D
set, a curve is a 1-D set, and a region is a 2-D set. In each
of these three cases, one assumes there is a unique veloc-
ity at each moving point, and one poses the computational
problem as, “how do you recover this unique velocity?”

In this paper, we go beyond the traditional image mo-
tion problem by considered a more general set of motions
in which the set of velocities at each moving point can be

1-D or 2-D. A 1-D set of velocities at a moving point means
that the velocities define a curve in image velocity space
(with the curve possibly differing from one moving image
point to another). A 2-D set of velocities at an image point
means that the velocities define a region in velocity space.

We treat image motion as a mapping from the domain
of image positions to the range of image velocities. The
novelty of our approach is to allow the subsets of velocity
space to be 1-D or 2-D sets in addition to the traditional 0-D
set.

The paper makes two contributions to the study of image
motion within this theme of dimensional analysis. The first
contribution, developed in Section 2, is a formal model of
image motion categories which are defined by the dimen-
sionality of the motion. The motion categories include fa-
miliar motions, as well motions that have not yet been con-
sidered in which the set of velocities at a moving point is
1-D or 2-D.

The second contribution, developed in Section 3, is a de-
tailed analysis of one of the new categories of motion. We
call this motion optical snow. Examples are the motion of
trees and branches in a forest as seen by a translating ob-
server, or the motion of rain or falling snow as seen by a
stationary observer. Optical snow produces a range of im-
age velocities at each point of the image. Such motions fail
to satisfy the classical optical flow assumption that there is a
unique image velocity at each pixel. As such, classical opti-
cal flow methods are not appropriate for representing these
motions. We introduce an alternative technique for analyz-
ing optical snow, and we provide examples that illustrate
the feasibility of the technique.

2 Motion Categories

The idea of analyzing and comparing motion categories has
been pursued previously and relationships between several
categories of motion been successfully explored, e.g. [1].
The novelty of our approach is to consider a larger set of
categories than has been considered previously, and to ex-
plicitly address the issue of dimensionality [2].
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2.1 Dimensional Analysis

To introduce the idea of our dimensional analysis, we con-
sider the possible dimensions of the set of moving points
in an image and the set of velocities of each of these mov-
ing points. There are three possible dimensions of the set
of moving points, namely 0-D, 1-D, and 2-D and there are
three possible dimensions of the set of image velocities at
each moving point, also 0-D, 1-D, and 2-D. Taking all 3�3
combinations yields nine possible dimensional categories of
motion. These are listed in Table 1. Categories 1–3, 4–6,
and 7–9 are motions in which the set of velocities at each
moving point is 0-D, 1-D, and 2-D respectively.

Table 1: Nine categories of image motion.

# dim set of image points set of velocities

1 0/0 point (0-D) point (0-D)
2 1/0 curve (1-D) point (0-D)
3 2/0 region (2-D) point (0-D)

4 0/1 point (0-D) curve (1-D)
5 1/1 curve (1-D) curve (1-D)
6 2/1 region (2-D) curve (1-D)

7 0/2 point (0-D) region (2-D)
8 1/2 curve (1-D) region (2-D)
9 2/2 region (2-D) region (2-D)

Let us consider a few examples. Category 1 is the mo-
tion of a single point, tracing out a curve in space-time. An
ideal example would be bird flying across the sky. Category
2 is the motion of a curve such that each point on the curve
has a unique velocity. Such a curve traces out a surface in
space-time. An example of such a moving image curve is
the boundary of a moving object. Category 3 is the mo-
tion of 2-D image region such that each point in the region
has a unique velocity. Such a motion traces out a volume
in space-time. These first three categories are familiar to
us. (See [2] for more examples.) Categories 4–9 are not so
familiar and require elaboration.

2.2 Axis-aligned motions

We now consider a refinement of the motion categories in
Table 1, which we call axis-aligned motions. For the axis
aligned motions, each 1-D curve is either a horizontal line
or a vertical line. This restriction to horizontal and verti-
cal lines is quite natural, since the force of gravity in the
physical world defines a natural coordinate system: objects
fall vertically, cameras pan and translate horizontally, etc.
Moreover, the restriction comes at little cost. By deforming
(morphing) an axis-aligned motion, the 1-D curve becomes
non-linear, and one obtains the more general corresponding
motion in Table 1. The advantage of working with axis-

aligned motions is that they enable us to articulate several
subtle distinctions that can occur within the categories of
Table 1, involving either a 1-D set of moving image pixels
or a 1-D set of velocities.

Axis-aligned motions are defined as follows. Consider
the four coordinates x; y and vx; vy in the usual way. The
coordinates x and y denote image positions, and the coor-
dinates vx and vy denote components of an image velocity
vector. An axis-aligned motion is one in which, for each of
the four coordinates, x; y; vx; and vy, there is motion either
at a large interval of values of that coordinate or at one value
of that coordinate only.

Table 2 illustrates 24 (i :e: 16) binary labelings of im-
age motion, according to the definition of axis-aligned mo-
tion. These labelings are 4-bit binary codes defined by the
x; y; vx; and vy coordinates. For any row in Table 2 and
for any column, a “1” means there is image motion over a
large interval of values of that coordinate, and a “0” means
there is image motion at one value of that coordinate only.
(A similar model was used in [3] to represent lighting cate-
gories.)

In Table 2, we have grouped the sixteen binary labeling
into the nine categories that we saw in Table 1. Two rows
in Table 2 are in the same category if they have the same
number of 1’s in their (x; y) columns and the same number
of 1’s in the (vx; vy) columns. That is, the nine categories
are determined by the dimension (0, 1, or 2) of the moving
points in the image domain and by the dimension (0, 1, or 2)
of the velocities at each of the moving points. For example,
in Category 1/0, each of the rows has one 1 in the (x; y)
columns and no 1’s in the (vx; vy) columns. In Category
1/1 each of the rows has one 1 in the (x; y) columns and
one 1 in the (vx; vy) columns. Note that, in the case of 1-D
sets of image points and/or motions, Table 2 distinguishes
between horizontal and vertical alignments. The result is a
subdivision of categories 2, 4, 5, 6, and 8 in Table 1. We
will now describe each category in Table 2 in more detail
and highlight several subtle distinctions and commonalities
between categories.

Category 0/0

Category 0/0 is defined by image motion that occurs at
a unique value of each of the coordinates x and y, and at a
unique value of the coordinates vx and vy. An example is a
point moving across a uniform background.

Note that this category of motion does not distinguish
between motion paths such as linear, circular, or undulatory
[4]. Such types of motions are sub-categories of Category 1.
These motions are equivalent in our representation because
they have the same dimensionality.

Category 1/0

Category 1/0 describes a moving curve in which the mo-
tion of each point on the curve is unique. In the axis-aligned
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Table 2: Axis aligned motions. Categories representing in-
stantaneous events are marked with �.

# dim Example x y vx vy

1 0/0 moving point 0 0 0 0
2 1/0 moving curve 1 0 0 0

0 1 0 0
3 2/0 optical flow 1 1 0 0

4 0/1 � line pointing 0 0 0 1
to camera 0 0 1 0

5 1/1 a � moving past 1 0 0 1
a corner 0 1 1 0

1/1 b texture behind a 1 0 1 0
linear aperture 0 1 0 1

6 2/1 optical snow 1 1 1 0
1 1 0 1

7 0/2 � splash 0 0 1 1
8 1/2 � exploding line 1 0 1 1

0 1 1 1
9 2/2 speckle noise 1 1 1 1

case, the curve can be either a horizontal or vertical line:
motion occurs for an large interval of x values and for a
unique y (case 1000), or for a large interval of y and for a
unique x (case 0100). In either case, for each point on the
moving line, there is a unique velocity vector (a point in
velocity space). This vector may vary from point to point
along the moving line. An example of this type of motion
would be the motion of the bounding contour of an object
with a horizontal or vertical edge.

An important issue here concerns the “aperature prob-
lem.” If the points on the moving line can be distinguished
from each other by different intensities each of which are
constant over time, then the velocity at each point is well
defined. If, however, the moving line is isoluminant in both
space and time, then only the normal component of the ve-
locity is well-defined. One could argue that there is a 1-
D set of velocities at each point on a moving isoluminant
line, since the image intensities constrain only the normal
component of velocity. Historically, this aperture problem
has been solved by imposing an additional constraint that
there is a unique motion at every point on the moving line,
for example, by considering the normal velocity only or by
using a regularization constraint such as maximal smooth-
ness. Once such a uniqueness constraint is imposed, one
can speak of a Category 1/0 motion.

Category 2/0

Category 2/0 motion is defined by a single velocity at
each point in the image, i.e. optical flow. Note that the

velocities may vary from point to point in the image. More-
over, motions of different topology such as diverging, trans-
lating, or rotating flows [5] are not distinguished. Such
topological differences do not affect the dimensionality of
the motion, and thus define sub-categories in our represen-
tation similar to what we saw in Category 0/0.

We next turn to motion categories in which there is a 1-D
set of velocities at each moving point.

Category 0/1

Category 0/1 motion is rare but worth discussing for
completeness. It can occur when a linear object rotates
about a point in 3-D and the line of the object instanta-
neously coincides with the optical axis of the camera. At
this instant, the image of the object collapses to a point. In
the spatio-temporal neighborhood of this singularity points
move in the same direction, but a range of image speeds re-
sults since the image speed is inversely proportional to the
depth along the line. For axis aligned motions, the 1-D set
of points is a horizontal line (case 0010) or a vertical line
(case 0001).

This category of motion is instantaneous i.e. singular.
Because of this special property, it is marked with an aster-
isk in Table 2. We will see other examples of instantaneous
motion categories shortly.

Category 1/1

Category 1/1 is defined by motion of a curve (or along
a curve) such that each point on the curve has a 1-D set of
velocities. In the case of axis-aligned motions, two distinct
and interesting examples emerge. The first (Category 1/1a)
is a singular motion; it occurs instantaneously only. The
second (Category 1/1b) occurs continually.

Category 1/1a

Category 1/1a is defined by two cases. In case 0110, the
moving points in the image are on a vertical line and for
each point on this vertical line there is a 1-D set of veloc-
ities that defines a horizontal line in velocity space. Case
1001 is the opposite. The moving points in the image are
on a horizontal line and for each point on this horizontal
line there is a 1-D set of velocities that define a vertical line
in velocity space.

An example of the first case (0110) is the motion ob-
served by a viewer who walks past an exterior convex cor-
ner of a brick building, such that the corner is defined by
two outer walls. A singular event occurs at the instant the
viewer crosses the extended plane of the far wall. At this
instant, the far wall instantaneously becomes visible and a
wide range of image velocities occurs. These velocities cor-
respond to the 2-D set of points (e.g. bricks) on the wall that
emerge suddenly into view. The continuum of horizontal
image velocities is due to motion parallax i.e. the bricks on
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the wall are at a range of distances from the observer. Since
the bricks all become visible at the same instant and along
the same vertical line in the image, a range of horizontal ve-
locities occur at each point on this line and at that instant.
Hence there is a 1D set of horizontal velocities at each point
on the vertical line.

A similar example (the 1001 case) occurs when one
climbs a set of stairs. At the instant the eye passes through
the extended plane of the landing of the floor above, the
horizontal image line that demarcates the landing becomes
the source of a range of vertical velocities corresponding to
points on the floor.

Notice that these motion events are quite different from
those produced near the occluding contour of a rotating
smooth surface, such as a rolling soccer ball, or the hori-
zon as one drives a car over a hill. In these latter exam-
ples, points emerge continually from behind the occluding
contour and the image velocity at each point is unique and
continuous, with a limit of zero velocity at the occluding
contour. Such motions are thus examples of optical flow
(Category 2/0) rather than of Category 1/1a.

Category 1/1b

The second Category 1/1 motion occurs continually over
time rather than instantaneously. Consider a textured back-
ground that is visible through a linear aperture such as a
crack in a doorway. As an observer moves past the aperture,
a 1-D speckle pattern is produced. This speckle is due to
strips of the textured background as they appear/disappear.

Do such speckle patterns constitute “motion” ? One
could argue they do not, since there are no image tokens
whose positions are changing over time in a well-defined
way, that is, there is no well-defined solution to the cor-
respondence problem. On the other hand, one could ar-
gue they do, since such patterns would activate biological
motion systems. Any “motion energy detector” [6] whose
spatial receptive field overlaps the linear aperture and who
is sensitive to velocity components parallel to the aperture
would have a response, regardless of its speed tuning. In
this sense, we consider that all image velocities parallel to
the line present in this motion category.

Category 2/1

Category 2/1 is defined by having a 1D set of velocities
at each point in the image. We call this motion optical snow
and we will analyze it in detail in Section 3. For now, we
present a few intuitive examples. One example is falling
snow as seen by a stationary observer. All image motion is
in the vertical direction and near any image position there is
a wide range of vertical speeds. This range of speeds is due
to the varying distances to the snowflakes visible to the eye.
In the axis-aligned case, this is an example of 1101 motion.
For a second example of Category 2/1 motion, consider an
observer walking through a forest whose trees are bare of

leaves and whose branches extend in many directions. Fur-
ther suppose the observer is looking off to the side as he
walks. In this scenario, all image motion is in the horizon-
tal direction and there is a range of image speeds at each
image position, since multiple objects are visible and the
image speed of each object is inversely proportional to its
depth. In the axis-aligned case, this is an example of 1110
motion. In both of these examples, there is image motion at
each point in the image and the velocities at each point are
in a single direction and at multiple speeds.

We next consider motion categories in which the set of
velocities at each moving point is 2-D.

Category 0/2

Category 0/2 is similar to Category 0/1 in that it occurs
instantaneously rather than continually. In Category 0/2, a
2-D set of velocities is defined at a single point in the image.
An example is the image of a stone dropping into water and
producing a splash. Another example is a bomb exploding.
In the small spatio-temporal neighborhood of this singular
event, image motions occur at all velocities.

Category 1/2

Category 1/2 is defined by a line that produces a set of
2D velocities. We have been unable to think of a natural ex-
ample of such a motion and we mention it for completeness
only. An artificial example would be an explosion of a wire.
Near the instant of the explosion, all velocities are observed
at each point on the wire.

Category 2/2

Category 2/2 motion occurs when all velocities are
present at all image positions. An example of this motion
would be a swarm of flying insects: within any image region
there is a well-defined 2-D set of image velocities. Other ex-
amples of motions in this category include a speckle pattern
such as white noise on a TV or specular reflections of sun-
light off small waves of a swimming pool. Such motions
are referred to as “scintillation” in [1]. As in Category 1/1b,
there is no well-defined motion correspondence for scintil-
lation, yet we can regard such image sequences as motion
because they would stimulate typical energy motion detec-
tors.

2.3 Discussion

We have categorized image motion patterns by a dimen-
sional analysis of the image space (x; y) and velocity space
(vx; vy). Several novel motion categories emerged from the
analysis, and we were able to relate the categories to each
other. Certain categories occur instantaneously (see * in Ta-
ble 2) whereas others occur continually. Certain categories
are defined by a natural spatio-temporal correspondence be-
tween points, whereas others are defined by a noise-like

0-7695-1143-0/01 $10.00 (C) 2001 IEEE



speckle in which no well-defined correspondence exists but
the patterns nonetheless stimulate energy motion detectors.

While this categorization does provide a framework for
the many motions we have discussed, it still has a number
of limitations. Certain types of time-varying images are not
considered, such as a flicker of lighting [1] or specularities
such as a “flash in the pan.” Also, because our analysis is
based on dimensional considerations only, we do not con-
sider detailed properties of the parameters of the motion that
might be visually important, such as sign of the direction of
motion, specific values of any of the coordinates (extrema
or zeroes), or topological sub-categories. Nor do we con-
sider higher order properties of motion such as accelera-
tion. Finally, we do not give special status to motions in
which there are a pair of velocities at each point such as in
the case of transparency or motion at an occlusion bound-
ary [7]. Despite these limitations, the categories we have
discussed provide a concise and coherent description of a
wide range of image motions.

3 Optical snow

The second contribution of this paper is to analyze Category
2/1 motion in detail. This category, which we call “optical
snow,” is very common in real scenes but has been neglected
entirely in previous studies of image motion.

We will study optical snow by analyzing its frequency
domain properties. As background, we begin by reviewing
frequency domain properties of classical translational mo-
tion, a specific case of optical flow in which the velocity
field is constant over an image window. We then extend this
frequency domain property to optical snow and present a
method for analyzing optical snow which is based on a bow
tie signature in the frequency domain. To our knowledge,
this bow tie signature has not been reported before in the
vision literature.

3.1 Motion in the frequency domain

Analysis of motion in the spatiotemporal frequency domain
has a long history in motion understanding research. Most
of the analysis is based on the following property (see [8]):
a textured image pattern I(x; y) that translates with a uni-
form image velocity (vx; vy) produces a plane of energy in
the frequency domain. This property is the basis of several
optical flow techniques, for example [9, 10, 11], and is for-
mally stated as follows.

Let F be the Fourier transform operator, let (!x; !y; !t)
be the spatiotemporal frequency variables, and let Æ() be the
Dirac delta function. Then,

FfI(x� vxt; y � vyt)g

= FfI(x; y)g Æ(vx !x + vy !y + !t):

It follows that the image energy in the frequency domain is
restricted to lie on a plane,

vx !x + vy !y + !t = 0 : (1)

Treating the image velocity components, vx and vy, as con-
stants in the above equation, the motion plane of Eq. (1)
intersects the plane !t = 0 at a line:

vx !x + vy !y = 0 : (2)

The velocity vector (vx; vy) is perpendicular to this line.
From Eq. (1), if we consider !t as a function of !x and

!y, then the gradient of !t is a constant vector, i.e.

(
@ !t

@ !x
;
@ !t

@ !y
) = (�vx;�vy): (3)

Thus, the slope of the motion plane in the direction

(!x; !y) = (vx; vy) is �
q
v2x + v2y .

3.2 Bow Tie Signature

How can the above frequency domain properties be applied
to the case of optical snow? Assume that the camera is
translating in a 3-D direction that is perpendicular to the op-
tical axis. In this case, the image velocities of all the objects
in the scene have a common direction, and the speeds of the
objects vary inversely with depth [12]. Let the 3D camera
motion have velocity (vx; vy; 0) relative to the camera co-
ordinate axis x̂; ŷ; ẑ where x̂ and ŷ are image coordinates
and ẑ is the optical axis. In the scenario, the projected image
motions of the objects in the scene are parallel to (vx; vy).
That is, the image velocity of a point is (� vx; � vy) where
� depends on the 3D depth of the point.

Fig. 1 shows a synthetic example. The scene is a set
of spheres of constant 3D size placed at random posi-
tions within a view volume. An image sequence I(x; y; t)
was created by moving the camera upwards at a con-
stant velocity.1 The image sequence was rendered using
OpenGL. One frame of the sequence, or xy slice, is shown
in Fig. 1a. Following [6], we illustrate the motion using a
yt slice in Fig. 1b. Multiple image speeds are evident in the
form of space-time bars of multiple orientations [12].

The motion properties described above are manifest in
the frequency domain as follows. Since each image veloc-
ity produces a plane in the frequency domain, multiple im-
age velocities produce multiple planes. When all the image
velocities are in the same direction (�vx; �vy), all motion

1The spheres are illuminated by collimated light source (point source at
infinity) in direction parallel to the line of sight, so there are no shadows.
The scene is viewed in perspective. The spheres are at depths ranging
from z = 4 to �4. The camera is at z = 10 and the field of view is 30
degrees. The image sequence was created by moving the camera upwards
at a constant velocity Vy = 0.025.
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planes pass through the line of Eq. (2). In this case, we
say that the family of planes yields a bow tie distribution of
power (see Fig. 2).

For a given image sequence, the bow tie can be visu-
alized by projecting (summing) the 3D power spectrum
j Î(!x; !y; !z) j

2 orthographically onto the plane,

cos� !x + sin� !y = 0 (4)

where � 2 [0; �): The bow tie signature emerges when the
projection is in the direction of the line of Eq. (2), that is,
when (cos�; sin�) is parallel to (vx; vy). For this �, each
motion plane projects to a line.

For the specific example of Fig. 1, the image velocities
are all in the vertical direction i.e. (vx; vy) is parallel to
(0; 1). From Eq. (2), the common line through which the
velocity planes pass satisfies !t = !y = 0 and therefore
has direction (1; 0; 0).

(a) xy slice (b) yt slice

Figure 1: Falling spheres sequence. (a) First frame. (b) yt
slice of sequence taken at rightmost pixel column of (a). As
the camera moves upward, the imaged spheres move down-
ward. Their speed is inversely proportional to their depth.

Fig. 3 shows projections of the power spectrum of the
falling sphere sequence for different �. When � = �

2
, we

obtain a bow tie signature as predicted since the image ve-
locities are parallel to (0; 1). The slope of the lines in the
bow tie are positive since the spheres are traveling down-
ward relative to the camera and hence the vy are all nega-
tive (recall Eq. (3)). When � deviates from �

2
, the bow tie

signature is diminished since the velocity planes no longer
project to lines.

Since the bow tie signature occurs only when the pro-
jection of Eq. (4) is perpendicular to the motion planes,
we say that the bow tie is a non-accidental feature for uni-
directional motion in the image plane. Non-accidental fea-
tures have been proposed for many types of motion includ-
ing rigid collections of points [13], oscillatory motion [4],
and 3D motion of point [14].

ω
x

ω
t

ω
y

Figure 2: Each image velocity produces a plane in the fre-
quency domain. Multiple image velocities, each having the
same direction, produce multiple planes intersecting at a
common line, Eq. (2).

In the next section, we introduce a method for recovering
the direction angle �.

3.3 Recovering direction of translation

We propose a two–stage approach to recovering the proper-
ties of optical snow. The first stage is to estimate the direc-
tion of image motion. The second stage is to estimate the
range of image speeds in that direction. In this paper, we
address only the first stage.

To estimate the direction of motion, we estimate the ori-
entation � of the bow tie signature in the frequency domain.
For each �, we sum all power in a truncated wedge above
the origin. The truncated wedge is defined by frequencies
(!x; !y; !t) such that

j
!t

cos� !x + sin� !y
j > vmax

and
k (!x; !y; !t) k2 > �

where vmax is the maximum expected speed, and � is a
threshold that removes power near the origin. The latter
constraint is needed because the direction of a small vector
is poorly defined.

In our experiments we chose � = 8 and vmax = 4:0 pix-
els per frame. We varied � between 0 and 180 degrees at
5 degree increments, i.e. the projected power is a function
of �, with a 180 degree periodicity. The function should
have a value of zero when (cos�; sin�) is parallel to the
direction of image motion. This is the direction in which
the bow tie signature emerges and thus there is no power
above the origin in the projection plot. The projected power
measurement increases to a maximum when (cos�; sin�) is
perpendicular to the direction of image motion. That is, the
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minima and maxima of the function are separated by 90 de-
grees. In practice, the minimum is non-zero. This residual
power in the truncated wedge is due to aliasing effects and
the finite size of the objects (spheres). In addition, for real
images, there is noise and camera jitter as well.

� = �
2

ω
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ω
t
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Figure 3: Projected power spectrum for synthetic sequence
in Fig. 1 onto (!v; !t) where !v = cos � !x+ sin � !y and
!v 2 [��; �], !t 2 [��; �]. In this and subsequent figures,
the axes have range [�N

2
: : : N

2
� 1], where N is the num-

ber of samples. To increase contrast, log power is plotted.
White corresponds to high values. The bow tie signature is
visible at � = �

2
where the motion planes project to lines.

We applied the truncated wedge, or “bow tie detector”
to several synthetic sequences of translating spheres, such
as in Fig. 1. Fig. 4 shows a typical set of responses of the
detector, as a function of �. In this case, we rotated the
camera �20Æ around the optical axis prior to rendering the
sequence. The minimum response occurs at � = 70Æ as ex-
pected. The response curve is normalized so the maximum
power is 1. The detector has a minimum response of 0:067,
a dynamic range of more than an order of magnitude.

Results for a natural image sequence are shown in Fig-
ure 5. The image sequence was obtained using a Hitachi
MPEG MP-EG10W camera. The image sequence is of a
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Figure 4: Bow tie detector applied to a synthetic image se-
quence similar to Fig. 1 but in which the camera was rotated
� 20Æ around the optical axis prior to rendering. The mini-
mum power in the truncated wedge occurs at 70Æ.

holly bush, seen by a camera moving horizontally on a slid-
ing platform. 128 frames were extracted from the middle
of the sequence. A 240� 256 region was taken from each
frame (see outlined areas in Figure 5a). The region was
padded with zeros to give a 256�256 image at every frame.

The mean grey level value of the entire sequence was
subtracted from each image frame. The frames were win-
dowed in both space and time by a Gaussian to reduce alias-
ing. The standard deviation � of the Gaussian for each of
the x; y and t axes was chosen so that the image I(x; y; t)
had width 6� for each axis. For each sequence I(x; y; t),
the 3D Fourier transform was calculated and the projection
of the power spectrum was computed for a range of � as in
Fig. 4.

Figure 5b shows the results of the bow tie detector for
the holly sequence. There is a well-defined minimum at 0
degrees, which corresponds to the horizontal motion. Fig-
ure 5c shows the projected power spectrum at 0 degrees.
The bow tie signature is clearly visible.

4 Summary

One of the fundamental goals of computational studies of
image motion is to develop methods for automatically char-
acterizing motion sequences based on both the camera mo-
tions (pan, tilt, zoom, translate, etc) and scene content (spa-
tial layout, density and motion of objects). The contribu-
tions reported in this paper are to introduce a model of mo-
tion categories based on a dimensional analysis, and to an-
alyze an important category of motion that has not been ad-
dressed before, namely optical snow, which is due to the
translation of an observer through a cluttered 3D scene. We
have also presented a computational theory of how to re-
cover parameters of such a motion.
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Figure 5: (a.) Frame from real image sequence of a holly
bush. The white box outlines the 240 � 256 region used
(the remaining rows were padded with zeros). (b.) Bow tie
detector applied to the holly image sequence. The minimum
occurs at 0Æ, corresponding to horizontal motion. (c.) The
bow tie signature is visible at � = 0.

Besides opening up new avenues for computer vision, we
believe this paper raises important questions about motion
processing in biological vision. Cluttered 3D environments
such as forests or tall grasslands are abundant in the natural
world. Animals that inhabit such environments must solve
complex motion understanding tasks in order to navigate, to
avoid predators and to track their prey. (See the discussion
of “the fox and the forest” in [2].) There have been many
studies of human and primate vision which have addressed
conditions of motion at multiple depths, or transparent mo-
tion. (See recent survey [15]). Stimuli for such studies are
typically composed of a small number (usually two) of mo-
tion layers, each of which is composed of patterns such ran-
dom dots lines, or transparent layers. While the impression
of layers in these stimuli it typically strong, the impression
of 3-D depth is relatively weak compared to optical snow

motions such as the sphere sequence in Fig. 1. It would be
interesting to measure how well the human or primate vi-
sual system can detect the direction of motion in such stim-
uli and how well the performance can be explained using a
computational model such as the bow tie detector that we
have introduced.
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