Detecting hand-ball events in video sequences
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Abstract

We analyse video sequences of a hand interacting with a
ball. The hand motion is segmented using a piecewise poly-
nomial motion model inspired by research in motor control.
Next, an adaptive gravitational model of the ball is used to
locate hand-ball events. We show that hand-ball events can
be automatically classified from velocity and acceleration

profiles.

1. Introduction

Given the trajectories of moving objects, what physically
meaningful aspects of the motion can be recovered?

We consider the problem of interpreting ballistic and
non-ballistic motion in real video sequences, such as shown
in Fig. 1. In this video the hand manipulates the ball — first,
by carrying it, then throwing, and finally catching it after
the ball bounces on the wall and floor.

Our eventual goal is to characterize events based on qual-
itative scene dynamics. For example, given the above video
we should infer that an “active” hand is moving a “passive”
ball by applying a force. Once released, the ball is undergo-
ing (passive) gravitational motion as it moves through the
air and bounces off the wall. In [6] a system was presented
that infers scene dynamics based on the Newtonian mechan-
ics of a simplified scene model. However, that system was
limited to the instantaneous analysis of continuous motion.
Sequences were processed on a frame by frame basis, and
discontinuous motions (due to contact changes, collisions,
or starts and stops of motion) were explicitly removed. To
apply dynamics analysis to extended sequences, we require
a way to identify the motion boundaries, and to determine
the precise velocity and accelerations at such boundaries.

In previous work [5, 4], we showed that ballistic motion
can be accurately described using a piecewise quadratic mo-
tion model. The sequences were segmented using dynamic
programming, and motion boundaries were then classified

Figure 1. A composite of the tracking results
for a sequence where a subject throws a bas-
ketball.

based on their velocity and/or acceleration discontinuities.
In that work, neither hand motion nor non-ballistic ball mo-
tion were considered.

The goal of this work is to analyze the motion of the ball
under non-ballistic motion, and in particular, motion caused
by the hand. Fig. 2 shows the trajectories of the hand and
ball overlaid on the image frame. The lines go from oldest
(grey) to most recent (black). The circles show the segmen-
tation of the hand trajectory based on a piecewise polyno-
mial model. Our analysis of ball motion is based on three
observations. First, we can determine the event type (catch-
ing, releasing, or hitting) based on the hand proximity. Sec-
ond, given the event type, we can fit an adaptive gravita-
tional model to the ball to determine the precise extent of
gravitational and non-gravitational motion. Finally, to clas-
sify the non-ballistic motion, we compare the velocity of
the ball and the velocity of the hand at the motion bound-
ary. Fig. 3 shows the classification of the resulting motion
boundaries and their corresponding frames in the videos.
The arrows in the lower left corner of each panel show the
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Figure 2. Hand (thick lines) and ball (thin
lines) trajectories for the “throw” motion se-
quence. Time goes from oldest (grey) to
newest (black). Circles show hand segmen-
tation found in Sec. 2.2.

steps in velocity and acceleration that may be used to clas-
sify the events.

This work makes three contributions. First, we show
that hand motion can be segmented using piecewise fifth
order polynomials inspired by work in motor control [1].
Second, by fitting a context-dependent gravitational model
to the ball over an adaptive window, we can isolate places
where the hand is causing non-gravitational motion of the
ball. Finally, given precise segmentation, we use the mea-
sured velocity steps (force impulses) on the ball to classify
various event types.

2 Hand segmentation

The video sequences in Fig. 3 were captured with a con-
sumer camcorder (Canon Optura Pi) at 640x480, 30fps,
non-interlaced. An adaptive view-based tracker [3] was
used to track the ball (circle) and forearm (elongated oc-
tagon), shown as highlighted parts in the frames. The mo-
tion was roughly parallel to the image, so the scene depth
was relatively constant. Hence we can safely treat a two
dimensional model for the projection of the hand and ball
as a true model for the hand and ball (a weak perspective
model). For subsequent trajectory processing, we use the
center of the circle for the ball and the endpoint of the oc-
tagon for the hand.

2.1 The Minimum Jerk Principle

An explicit piecewise smooth model of the hand trajec-
tory in a fixed canonical co-ordinate frame was necessary.
The natural approach to devising an appropriate model is to
start with a simple universal principle which could give rise
to the varieties of intentional hand motions we regularly en-
counter. Such a model was previously proposed in the Psy-
chological literature concerning motor control. Flash and
Hogan [1] devised and verified a model based on the prin-
cipal of minimizing the integral of the square of the magni-
tude of the jerk (which is defined as the rate of change of the
acceleration of the hand). Using the calculus of variations
they determined that unconstrained hand motion can be de-
scribed by fifth order polynomials in time. This principal is
known as the minimum jerk principle [1].

Fifth order polynomials also provide some desirable
properties for our purposes. They are continuous and
smooth and it is easy to calculate their derivatives which
we can use to estimate velocities and accelerations. They
are the minimum degree polynomial that can describe one
smooth continuous motion which is constrained to have
zero acceleration and velocity at the endpoints like a typical
hand movement. Also we are able to use the least squares
technique to fit a polynomial to the hand position data and
perform the segmentation algorithm described below.

It was necessary to determine the coefficients of the fifth
order polynomials in a slightly different way than did Flash
and Hogan [1] when they were verifying their model. They
would impose given position, velocity, and accelerations
end points (and in some cases, an interior position point) of
one single hand motion. This uniquely specifies the fifth or-
der polynomial describing the hand trajectory between the
end points. The video sequences do not, however, contain
pre-specified motion endpoints. In fact we found that im-
posing arbitrary endpoints can give rise to some unnatural
trajectory predictions (including cusps and loops) which do
not correspond to the hand data. We use the following ap-
proach.

2.2 Dynamic Programming

We consider the segmentation of the hand motion into
piecewise fifth order polynomial segments. The total cost
of a segmentation is given by

N

Cost= " i HX(t)—Xn(t;Qn)

n=1 |t=tn—-1

2
\ AL

where X (t) is the observed hand motion, X, (¢;0,,) is the
nth polynomial segment with polynomial coefficients 6,,
which we use to estimate the hand’s velocity and acceler-
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Figure 3. Video and segmentation results for three of the six sequences used in this paper. The ball
(circle) and forearm (elongated region) from the tracker are highlighted in each frame. Panels show
trajectories of hand (thick line) and ball (thin line) around each event (frame # shown above). Motion
discontinuities at events are shown in lower left corner of each panel (Av =black, Aa =grey).
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Figure 4. Hand (thick lines) and ball (thin lines) trajectories for motion sequences. Time goes from
oldest (grey) to newest (black). Circles show hand segmentation found in Sec. 2.2.

ation, and N is the number of segments in the model. The
term, A > 0, is the penalty for introducing a segment.

We use a dynamic programming scheme similar to the
one described in [5] except that we extend it to fifth order
X(t)

polynomials
( Y(t) )

ag + ait + ast? + ast? + agt + ast®
< by + bit + bat? + bst3 + byt* + bst?
The algorithm requires O(7'?) least square fits to complete,
where T is the number of frames in the video — the most
computationally intensive part of our event detection pro-
cess. The dynamic programming algorithm outputs a glob-
ally optimal hand segmentation over the entire video. We
expect it to find the points in time where the hand changes
its intentional motion. In practice, this means it gives us
a superset of the hand-ball events in the video. Some mo-
tion boundaries in the hand do not correspond to hand-ball

events, but we are able to automatically discard them as spu-
rious breakpoints.

X’n(t; an)

The quality of the segmentation depends on the value
of A. Fig 5 demonstrates how a segmentation can change
over different values of \. We manually selected robust A
values which provide a stable segmentation. Fig 4 show
segmentations for two other sequences. For clarity, only
partial trajectories are shown.
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Figure 5. Hand segmentation variation over
A for “liftdrib” sequence. Black and grey
curves are Y (¢) for the hand and ball respec-
tively. Breakpoints are shown at bottom of
plot. Each row shows breakpoints (boxes) for
one value of \. )\ varies from zero to 800.

3 Context-dependent gravitational model

The hand motion breakpoints from the dynamic pro-
gramming segmentation provide candidate points for direct
hand-ball events. We use an adaptive ballistic model fit-
ting process on the ball’s motion to further analyze these
instances. The principle is that the ball’s motion can be
precisely described using a gravitational (ballistic) motion
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Figure 6. Hand-ball proximity vs. time graphs
demonstrating the three interesting classes
of contact change at an instant: cessation of
contact (top left), onset of contact (top right),
and instantaneous contact (bottom left)

model whenever it is not being directly influenced by the
hand. A combination of the hand motion model, the hand-
ball overlap information from the image, and the ballistic
motion of the ball around the breakpoints allows us to fil-
ter spurious candidate points and to measure the force im-
pulses and acceleration changes on the ball at the time of
the events. We use the hand-ball overlap ontology shown in
Fig. 6. Fig. 7 shows a ballistic motion fit around the first
breakpoint in the “liftdrib” video. Note the quadratic fits on
the left and right side.

3.1. Hand-Ball Overlap Context

We start by creating small time windows with a length
of 21 frames around each candidate breakpoint. The break-
point is at the center of the window and we take the 10
frames after and the 10 frames before it. This window
length provides us with enough samples to do local model
fitting and analysis around the segmentation boundaries
while still representing only 700 ms of video time — short
enough to assume that only one instantaneous hand-ball
event can occur within the window. This paper adopts the
convention from [4] that the segmentation boundary defines
two consecutive open time intervals: ¢_ before, and ¢ af-
ter, with ¢y representing the instant.

At each point in time the hand-ball proximity is given
from the geometry in the image. We threshold on the prox-
imity to determine the overlap change class of each window.
Image overlap can be taken to roughly represent contact be-
tween the hand and the ball. The contact change is verified

and adjusted later when the ballistic model fitting process is
performed. Allowable contact transitions were previously
characterized in [4] which gives us a convenient ontology
for contact changes within the event window. Five allow-
able contact change classes were described, but we only find
three of them useful for event descriptions:

e C_CyC, — contact onset
e C_C,C, — instantaneous contact

e C_CyC, — contact cessation

We observed that this ontology was quite useful be-
cause every event window could be clearly described by
one unique overlap change class implying a corresponding
contact change. In fact, a simple classification scheme that
thresholds hand-ball proximity at the beginning, and the end
together with the minimum proximity value within a win-
dow was always successful in determining overlap change.
All event windows which do not demonstrate an interest-
ing contact change (ie, when there was continuous contact
throughout or when the hand and ball never contact) are dis-
carded as spurious breakpoints. Only spurious breakpoints
which have coincidental image overlap changes can make
it past this filter — they are addressed in the ballistic model
fitting process.

3.2. Incremental Ballistic Model Fit

Guided by the contact change as context, we perform a
sequence of ballistic motion model fits on the ball within
the window. We want to fit the ball’s motion with a grav-
itational model precisely when the hand is not contacting
the ball. The contact change class provides a rough idea
about where the ball may be in free gravitational motion and
where it is manipulated by the hand. The simplicity of the
distinct contact change classes means that the gravitational
motion can only occur in one or two portions of the instan-
taneous event window: on the ¢_ (left) side in the case of
C_CyC,,onthet, (right)side in the case of C_CyCy and
on the left and right side in the case of C_CyC,. In par-
ticular, the classes indicate whether to use ballistic motion
on on the very first and/or very last frame of the window.
Hence what we may do is incrementally fit quadratic poly-
nomials (the ballistic motion model described in [4]) on the
ball starting from the left (and/or right) side of the window.
We keep expanding the times of ballistic motion toward the
event at the middle of the window until we determine that
the ballistic model no longer accurately describes the data.

This style of adaptive fit is successful in giving the pre-
cise time when ballistic motion ceases (and/or starts) be-
cause the effects of the hand on the motion of the ball are
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Figure 7. Adaptive fit of gravitational model.
(top) Quadratic fit of left and right. (bottom)
Error (s2) for gravitational segments. Verti-
cal lines indicate extent of gravational model.
For clarity only fit of Y (¢) is shown.

much greater than the noise of the tracker. For example, if
we perform a least squares quadratic fit on the ball’s motion
from the left edge of the window until the n*" frame we can
estimate the error of the fit by the following formula:

n

%,.(0) - X(0) 3)

where X (t) = ( i/(g)) > is the position of the ball at time

t and

S _ X(t) _ ag —+ alt + a2t2

Xnlt) = ( Y (t) > - ( bo + b1t + bat? )
is a quadratic polynomial representing ballistic motion with
coefficients determined by a least squares fit on the ball’s
position at times 1 through n. (When error values are cal-
culated for the right side of the window, we use equation 3
except ¢ runs from n to the window length.)

So long as the ball follows ballistic motion on frames

1 to n, this average squared error is roughly equal to the
tracker noise. As soon as n increases to a point where the
hand starts manipulating the ball, we always observe a dras-
tically higher average squared error s2 value. (See the bot-
tom of Fig. 7 for example s2 values as n ranges from 1 to the
window length — the thin black plot. The dashed horizon-
tal line represents the expected tracker noise). A threshold
on the average residual error provides a good stopping con-
dition on the incremental expansion of the ballistic model.
Furthermore, this stopping point is a precise measurement

of the onset (or cessation) a hand-ball event. Even though
events are reasonably considered instantaneous, some in-
volve a complex physical process that may take several
frames within the window. Our fitting method allows us
to find the exact start and stop times of such an event. The
top of Fig. 7 shows the results of performing an adaptive fit
on an event in the “liftdrib” sequence. Note that the fits are
done on the left and the right because the overlap context is
an instantaneous hit: C_CoC.

We can use the event onset and cessation to further fil-
ter any spurious sequences. For example, the ball may not
have actually come into contact with the hand during the
time window. In this case the ballistic motion would be ap-
propriate for the entire window leading our incremental fit
to expand the ballistic fit all the way to the other edge of
the window. Hence we can filter events as spurious (even
though some coincidental hand-ball overlap may have ap-
peared in the image) when the ballistic model clearly de-
scribes the motion of the ball during the entire event win-
dow. We give ballistic motion fitting preference over the
overlap information because our generous image overlap
threshold gives some faulty contact change classes when
compared to an accurate quadratic motion fit.

The ballistic motion models found here are combined
with the event onset (and cessation) times to calculate the
force impulses and the acceleration changes that the ball
experiences during the event.

3.3. Calculating the Impulses

Using the quadratic polynomial fits on the ball during
ballistic motion we can estimate the ball’s velocity at the
onset (and/or cessation) of the event. We approximate the
ball’s velocity at all other points using the hand’s motion.
Recall that the motion of the hand is measured using the
fifth order polynomials found in the dynamic programming
segmentation. This gives us a well principled estimate of
the ball’s velocity and acceleration at all points within the
event window.

It is a simple matter of subtracting the initial velocity
and acceleration vectors of the ball from the final velocity
and acceleration vectors to extract the precise instantaneous
velocity steps (Av) and acceleration steps (Aa). We now
infer a hand-ball event caused a force impulse and acceler-
ation change on the ball, and we have estimates for these
values. The duration of events and the measured velocity
steps provide features we can use to further characterize the
events at the non-spurious event breakpoints.

4 Event classification

Given the force impulses as features, can we more pre-
cisely classify a hand-ball event? Even in the limited num-
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Figure 8. Velocity steps of all events in a spe-
cial rectangular coordinate frame. Ball’s ini-
tial velocity is represented as the thick black
vector at (0,1)

ber of videos we segmented, the velocity steps we extracted
contain some obvious structure that helps answer this ques-
tion. The events are highlighted in Fig. 8 where a scatter
plot of the impulse values is represented using vectors in
a rectangular coordinate frame where the initial velocity of
the ball at the onset of an event v_ is represented as (0,1).

When we manually separate out the different events de-
pending on whether they are considered a release, hit, push,
or catch we observe some distinct regualities. These regu-
larities are quite intuitive. For example, we would expect
that the velocity step extracted from a catch event would be
in the opposite direction to the ball’s motion at the instant it
is caught and that its magnitude is roughly equal to the mag-
nitude of the ball’s velocity because usually the event in-
volves the hand catching the ball and reducing its motion to
zero. This structure appears in the data as the squares close
to the (—1,0) point in Fig. 8. We used these categories to
provide the criteria for a rough classification scheme for la-
belling the events in the video sequences. Combining these
categories with the contact change we get a simple ontol-
ogy of hand-ball events and a simple hierarchical decision
process to classify the events. This is summarized in Fig. 9

Given more data from additional videos with a larger va-
riety of events, it is reasonable to expect we would see addi-
tional regularities. In fact, using the acceleration steps and
several other features to create a more complete ontology of
hand-ball motion events is an avenue for future work.
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Figure 9. Hierarchical ontology of event
motions. Top level distinguishes con-
tact changes (represented by the proxim-
ity classes). Next level makes distinctions
based on velocity step Av relative to the
ball’s initial velocity v_

5 Conclusion

We showed that a piecewise fifth order polynomial seg-
mentation of the hand trajectory was sufficient to find hand-
ball interaction in the movies. When combined with prox-
imity and gravitational models, event duration and force im-
pulses may be determined.

There are a number of avenues for future research. An
obvious problem is that we track the hand and ball indepen-
dently, and in a bottom-up fashion. Multiple event models
(eg., gravitational and nongravitataional motion) should be
incorporated into the tracking process [2]. In addition, we
should be able to determine events based on the joint hand-
ball motion, incorporating regularities such as that the hand
is approaching or following the ball.

Our eventual goal is to use a physics-based model for
processing extended motion sequences. Such a system
should put additional physical constraints on events, such
as energy conservation at collisions, transfer of angular mo-
mentum (eg., spin), etc. Furthermore, to represent com-
posite actions, such as dribbling a basketball, we require a
representation for extended events. Such events could be
described using the event logic proposed in [7].
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