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Abstract

In a Bayesian mixture model it is not necessary a priori to limit the num-
ber of components to be finite. In this paper an infinite Gaussian mixture
model is presented which neatly sidesteps the difficult problem of find-
ing the “right” number of mixture components. Inference in the model is
done using an efficient parameter-free Markov Chain that relies entirely
on Gibbs sampling.

1 Introduction

One of the major advantages in the Bayesian methodology is that “overfitting” is avoided;
thus the difficult task of adjusting model complexity vanishes. For neural networks, this
was demonstrated by Neal [1996] whose work on infinite networks led to the reinvention
and popularisation of Gaussian Process models [Williams & Rasmussen, 1996]. In this
paper a Markov Chain Monte Carlo (MCMC) implementation of a hierarchical infinite
Gaussian mixture model is presented. Perhaps surprisingly, inference in such models is
possible using finite amounts of computation.

Similar models are known in statistics as Dirichlet Process mixture models and go back
to Ferguson [1973] and Antoniak [1974]. Usually, expositions start from the Dirichlet
process itself [West et al, 1994]; here we derive the model as the limiting case of the well-
known finite mixtures. Bayesian methods for mixtures with an unknown (finite) number
of components have been explored by Richardson & Green [1997], whose methods are not
easily extended to multivariate observations.

2 Finite hierarchical mixture

The finite Gaussian mixture model withk components may be written as:

p(y|µ1, . . . , µk, s1, . . . , sk, π1, . . . , πk) =
k∑

j=1

πjN
(
µj , s

−1
j

)
, (1)

whereµj are the means,sj the precisions(inverse variances),πj the mixing proportions
(which must be positive and sum to one) andN is a (normalised) Gaussian with specified
mean and variance. For simplicity, the exposition will initially assume scalar observations,
n of which comprise the training datay = {y1, . . . , yn}. First we will consider these
models for a fixed value ofk, and later explore the properties in the limit wherek →∞.
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Gibbs sampling is a well known technique for generating samples from complicated mul-
tivariate distributions that is often used in Monte Carlo procedures. In its simplest form,
Gibbs sampling is used to update each variable in turn from its conditional distribution
given all other variables in the system. It can be shown that Gibbs sampling generates sam-
ples from the joint distribution, and that the entire distribution is explored as the number of
Gibbs sweeps grows large.

We introduce stochasticindicator variables,ci, one for each observation, whose role is to
encode which class has generated the observation; the indicators take on values1 . . . k.
Indicators are often referred to as “missing data” in a mixture model context.

In the following sections the priors on component parameters and hyperparameters will
be specified, and the conditional distributions for these, which will be needed for Gibbs
sampling, will be derived. In general the form of the priors are chosen to have (hopefully)
reasonable modelling properties, with an eye to mathematical convenience (through the use
of conjugate priors).

2.1 Component parameters

The component means,µj , are given Gaussian priors:

p(µj |λ, r) ∼ N
(
λ, r−1

)
, (2)

whose mean,λ, and precision,r, are hyperparameters common to all components. The
hyperparameters themselves are given vague Normal and Gamma priors:

p(λ) ∼ N
(
µy, σ2

y

)
, p(r) ∼ G

(
1, σ−2

y

)
∝ r−1/2 exp(−rσ2

y/2), (3)

whereµy andσ2
y are the mean and variance of the observations1. The shape parameter of

the Gamma prior is set to unity, corresponding to a very broad (vague) distribution.

The conditional posterior distributions for the means are obtained by multiplying the like-
lihood from eq. (1) conditioned on the indicators, by the prior, eq. (2):

p(µj |c,y, sj , λ, r) ∼ N
( ȳjnjsj + λr

njsj + r
,

1
njsj + r

)
, ȳj =

1
nj

∑
i:ci=j

yi, (4)

where theoccupation number, nj , is the number of observations belonging to classj, and
ȳj is the mean of these observations. For the hyperparameters, eq. (2) plays the role of
the likelihood which together with the priors from eq. (4) give conditional posteriors of
standard form:

p(λ|µ1, . . . , µk, r) ∼ N
(µyσ−2

y + r
∑k

j=1 µj

σ−2
y + kr

,
1

σ−2
y + kr

)
,

p(r|µ1, . . . , µk, λ) ∼ G
(
k + 1,

[ 1
k + 1

(σ2
y +

k∑
j=1

(µj − λ)2)
]−1

)
.

(5)

The component precisions,sj , are given Gamma priors:

p(sj |β, w) ∼ G
(
β, w−1

)
, (6)

whose shape,β, and mean,w−1, are hyperparameters common to all components, with
priors of inverse Gamma and Gamma form:

p(β−1) ∼ G(1, 1) =⇒ p(β) ∝ β−3/2 exp
(
− 1/(2β)

)
, p(w) ∼ G(1, σ2

y). (7)

1Strictly speaking, the priors ought not to depend on the observations. The current procedure is
equivalent to normalising the observations and using unit priors. A wide variety of reasonable priors
will lead to similar results.



The conditional posterior precisions are obtained by multiplying the likelihood from eq. (1)
conditioned on the indicators, by the prior, eq. (6):

p(sj |c,y, µj , β, w) ∼ G
(
β + nj ,

[ 1
β + nj

(
wβ +

∑
i:ci=j

(yi − µj)2
)]−1

)
. (8)

For the hyperparameters, eq. (6) plays the role of likelihood which together with the priors
from eq. (7) give:

p(w|s1, . . . , sk, β) ∼ G
(
kβ + 1,

[ 1
kβ + 1

(σ−2
y + β

k∑
j=1

sj)
]−1

)
, (9)

p(β|s1, . . . , sk, w) ∝ Γ
(β

2
)−k exp

(−1
2β

)(β

2
)(kβ−3)/2

k∏
j=1

(sjw)β/2 exp
(
− βsjw

2
)
.

The latter density is not of standard form, but it can be shown thatp(log(β)|s1, . . . , sk, w)
is log-concave, so we may generate independent samples from the distribution forlog(β)
using the Adaptive Rejection Sampling (ARS) technique [Gilks & Wild, 1992], and trans-
form these to get values forβ.

The mixing proportions,πj , are given a symmetric Dirichlet (also known as multivariate
beta) prior with concentration parameterα/k:

p(π1, . . . , πk|α) ∼ Dirichlet(α/k, . . . , α/k) =
Γ(α)

Γ(α/k)k

k∏
j=1

π
α/k−1
j , (10)

where the mixing proportions must be positive and sum to one. Given the mixing propor-
tions, the prior for the occupation numbers,nj , is multinomial and the joint distribution of
the indicators becomes:

p(c1, . . . , cn|π1, . . . , πk) =
k∏

j=1

π
nj

j , nj =
n∑

i=1

δKronecker(ci, j). (11)

Using the standard Dirichlet integral, we may integrate out the mixing proportions and
write the prior directly in terms of the indicators:

p(c1, . . . , cn|α) =
∫

p(c1, . . . , cn|π1, . . . , πk)p(π1, . . . , πk)dπ1 · · · dπk (12)

=
Γ(α)

Γ(α/k)k

∫ k∏
j=1

π
nj+α/k−1
j dπj =

Γ(α)
Γ(n + α)

k∏
j=1

Γ(nj + α/k)
Γ(α/k)

.

In order to be able to use Gibbs sampling for the (discrete) indicators,ci, we need the
conditional prior for a single indicator given all the others; this is easily obtained from
eq. (12) by keeping all but a single indicator fixed:

p(ci = j|c−i, α) =
n−i,j + α/k

n− 1 + α
, (13)

where the subscript−i indicates all indexes excepti andn−i,j is the number of observa-
tions, excludingyi, that are associated with componentj. The posteriors for the indicators
are derived in the next section.

Lastly, a vague prior of inverse Gamma shape is put on the concentration parameterα:

p(α−1) ∼ G(1, 1) =⇒ p(α) ∝ α−3/2 exp
(
− 1/(2α)

)
. (14)



The likelihood forα may be derived from eq. (12), which together with the prior from
eq. (14) gives:

p(n1, . . . , nk|α) =
αkΓ(α)

Γ(n + α)
, p(α|k, n) ∝

αk−3/2 exp
(
− 1/(2α)

)
Γ(α)

Γ(n + α)
. (15)

Notice, that the conditional posterior forα depends only on number of observations,n, and
the number of components,k, and not on how the observations are distributed among the
components. The distributionp(log(α)|k, n) is log-concave, so we may efficiently generate
independent samples from this distribution using ARS.

3 The infinite limit

So far, we have consideredk to be a fixed finite quantity. In this section we will explore
the limit k → ∞ and make the final derivations regarding the conditional posteriors for
the indicators. For all the model variables except the indicators, the conditional posteriors
for the infinite limit is obtained by substituting fork the number of classes that have data
associated with them,krep, in the equations previously derived for the finite model. For the
indicators, lettingk →∞ in eq. (13), the conditional prior reaches the following limits:

components wheren−i,j > 0: p(ci = j|c−i, α) =
n−i,j

n− 1 + α
,

all other compo-
nents combined:

p(ci 6= ci′ for all i′ 6= i|c−i, α) =
α

n− 1 + α
.

(16)

This shows that the conditional class prior for components that are associated with other
observations is proportional to the number of such observations; the combined prior for
all other classes depends only onα andn. Notice how the analytical tractability of the
integral in eq. (12) is essential, since it allows us to work directly with the (finite number
of) indicator variables, rather than the (infinite number of) mixing proportions. We may
now combine the likelihood from eq. (1) conditioned on the indicators with the prior from
eq. (16) to obtain the conditional posteriors for the indicators:

components for whichn−i,j > 0: p(ci = j|c−i, µj , sj , α) ∝ (17)

p(ci = j|c−i, α)p(yi|µj , sj ,c−i) ∝
n−i,j

n− 1 + α
s
1/2
j exp

(
− sj(yi − µj)2/2

)
,

all other components combined:p(ci 6= ci′ for all i 6= i′|c−i, λ, r, β, w, α) ∝

p(ci 6= ci′ for all i 6= i′|c−i,α)
∫

p(yi|µj , sj)p(µj , sj |λ, r, β, w)dµjdsj .

The likelihood for components with observations other thanyi currently associated with
them is Gaussian with component parametersµj andsj . The likelihood pertaining to the
currently unrepresented classes (which have no parameters associated with them) is ob-
tained through integration over the prior distribution for these. Note, that we need not
differentiate between the infinitely many unrepresented classes, since their parameter dis-
tributions are all identical. Unfortunately, this integral is not analytically tractable; I follow
Neal [1998], who suggests to sample from the priors (which are Gaussian and Gamma
shaped) in order to generate a Monte Carlo estimate of the probability of “generating a new
class”. Notice, that this approach effectively generates parameters (by sampling from the
prior) for the classes that are unrepresented. Since this Monte Carlo estimate is unbiased,
the resulting chain will sample fromexactlythe desired distribution, no matter how many
samples are used to approximate the integral; I have found that using a single sample works
fairly well in many applications.

In detail, there are three possibilities when computing conditional posterior class probabil-
ities, depending on the number of observations associated with the class:



if n−i,j > 0: there are other observations associated with classj, and the posterior class
probability is as given by the top line of eq. (17).

if n−i,j = 0 and ci = j: observationyi is currently the only observation associated with
classj; this is an peculiar situation, since there are no other observations associ-
ated with the class, but the class still has parameters. It turns out that this situation
should be handled as an unrepresented class, but rather than sampling for the pa-
rameters, one simply uses the class parameters; consult [Neal 1998] for a detailed
derivation.

unrepresented classes:values for the mixture parameters are picked at random from the
prior for these parameters, which is Gaussian forµj and Gamma shaped forsj .

Now that all classes have parameters associated with them, we can easily evaluate their
likelihoods (which are Gaussian) and the priors, which take the formn−i,j/(n − 1 + α)
for components with observations other thanyi associated with them, andα/(n − 1 + α)
for the remaining class. When hitherto unrepresented classes are chosen, a new class is
introduced in the model; classes are removed when they become empty.

4 Inference; the “spirals” example

To illustrate the model, we use the3 dimensional “spirals” dataset from [Ueda et al, 1998],
containing800 data point, plotted in figure 1. Five data points are generated from each of
160 isotropic Gaussians, whose means follow a spiral pattern.
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Figure 1: The800 cases from the three dimensional spirals data. The crosses represent a
single (random) sample from the posterior for the mixture model. Thekrep = 20 repre-
sented classes account forn/(n+α) ' 99.6% of the mass. The lines indicate 2 std. dev. in
the Gaussian mixture components; the thickness of the lines represent the mass of the class.
To the right histograms for100 samples from the posterior forkrep, α andβ are shown.

4.1 Multivariate generalisation

The generalisation to multivariate observations is straightforward. The means,µj , and
precisions,sj , become vectors and matrices respectively, and their prior (and posterior)
distributions become multivariate Gaussian and Wishart. Similarly, the hyperparameterλ



becomes a vector (multivariate Gaussian prior) andr andw become matrices with Wishart
priors. Theβ parameter stays scalar, with the prior on(β −D + 1)−1 being Gamma with
mean1/D, whereD is the dimension of the dataset. All other specifications stay the same.
SettingD = 1 recovers the scalar case discussed in detail.

4.2 Inference

The mixture model is started with a single component, and a large number of Gibbs sweeps
are performed, updating all parameters and hyperparameters in turn by sampling from the
conditional distributions derived in the previous sections. In figure 2 the auto-covariance
for several quantities is plotted, which reveals a maximum correlation-length of about270.
Then30000 iterations are performed for modelling purposes (taking18 minutes of CPU
time on a Pentium PC):3000 steps initially for “burn-in”, followed by27000 to generate
100 roughly independent samples from the posterior (spaced evenly270 apart). In figure
1, the represented components of one sample from the posterior is visualised with the
data. To the right of figure 1 we see that the posterior number of represented classes is
very concentrated around18 − 20, and the concentration parameter takes values around
α ' 3.5 corresponding to onlyα/(n+α) ' 0.4% of the mass of the predictive distribution
belonging to unrepresented classes. The shape parameterβ takes values around5−6, which
gives the “effective number of points” contributed from the prior to the covariance matrices
of the mixture components.

4.3 The predictive distribution

Given a particular state in the Markov Chain, the predictive distribution has two parts: the
represented classes (which are Gaussian) and the unrepresented classes. As when updating
the indicators, we may chose to approximate the unrepresented classes by a finite mixture
of Gaussians, whose parameters are drawn from the prior. The final predictive distribution
is an average over the (eg.100) samples from the posterior. For the spirals data this density
has roughly1900 components for the represented classes plus however many are used to
represent the remaining mass. I have not attempted to show this distribution. However, one
can imagine a smoothed version of the single sample shown in figure 1, from averaging
over models with slightly varying numbers of classes and parameters. The (small) mass
from the unrepresented classes spreads diffusely over the entire observation range.
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Figure 2: The left plot shows the auto-covariance length for various parameters in the
Markov Chain, based on105 iterations. Only the number of represented classes,krep, has
a significant correlation; the effective correlation length is approximately270, computed
as the sum of covariance coefficients between lag−1000 and1000. The right hand plot
shows the number of represented classes growing during the initial phase of sampling. The
initial 3000 iterations are discarded.



5 Conclusions

The infinite hierarchical Bayesian mixture model has been reviewed and extended into a
practical method. It has been shown that good performance (without overfitting) can be
achieved on multidimensional data. An efficient and practical MCMC algorithm with no
free parameters has been derived and demonstrated on an example. The model is fully au-
tomatic, without needing specification of parameters of the (vague) prior. This corroborates
the falsity of the common misconception that “the only difference between Bayesian and
non-Bayesian methods is the prior, which is arbitrary anyway. . . ”.

Further tests on a variety of problems reveals that the infinite mixture model produces
densities whose generalisation is highly competitive with other commonly used methods.
Current work is undertaken to explore performance on high dimensional problems, in terms
of computational efficiency and generalisation.

The infinite mixture model has several advantages over its finite counterpart: 1) in many
applications, it may be more appropriate not to limit the number of classes, 2) the number
of represented classes is automatically determined, 3) the use of MCMC effectively avoids
local minima which plague mixtures trained by optimisation based methods, eg. EM [Ueda
et al, 1998] and 4) it is much simpler to handle the infinite limit than to work with finite
models with unknown sizes, as in [Richardson & Green, 1997] or traditional approaches
based on extensive crossvalidation. The Bayesian infinite mixture model solves simultane-
ously several long-standing problems with mixture models for density estimation.
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