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Abstract. Natural images contain characteristic statistical regularities that set them apart from
purely random images. Understanding what these regularities are can enable natural images to
be coded more efficiently. In this paper, we describe some of the forms of structure that are
contained in natural images, and we show how these are related to the response properties of
neurons at early stages of the visual system. Many of the important forms of structure require
higher-order (i.e. more than linear, pairwise) statistics to characterize, which makes models
based on linear Hebbian learning, or principal components analysis, inappropriate for finding
efficient codes for natural images. We suggest that a good objective for an efficient coding of
natural scenes is to maximize the sparseness of the representation, and we show that a network
that learns sparse codes of natural scenes succeeds in developing localized, oriented, bandpass
receptive fields similar to those in the mammalian striate cortex.

1. Introduction

How does the brain transform retinal images into more efficient and useful representations
that make explicit the objects, shapes, motions, etc., that are present in the environment?
Neurophysiological data suggest that progressively more complex aspects of object shape
are extracted in a hierarchy of visual cortical areas beginning with the striate cortex (V1)
and leading principally through V2, V4, and into the inferotemporal complex. Obtaining
a more complete or detailed characterization of what these cells are actually computing,
though, has proven to be elusive. The approach that we and others [1, 7, 17] have recently
taken is to look at the problem from the opposite end, and to study the structure of the
images we typically view. Natural scenes constitute a minuscule fraction of the space of all
possible images, and it seems reasonable that the cortex has both evolved and developed
strategies for representing these images efficiently. Thus, characterizing the structure of
natural images, and formulating efficient coding strategies based on this structure, may lend
insights into the types of processing going on in the cortex. In this paper, we apply this
approach toward understanding the response properties of so-called ‘simple cells’ at the first
stage of cortical processing, area V1.

The spatial receptive fields of simple cells have been reasonably well described
physiologically and can be characterized as beinglocalized, oriented, andbandpass: each
cell responds to visual stimuli within a restricted and contiguous region of space that is
organized into excitatory and inhibitory subfields elongated along a particular direction, and
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the spatial frequency response is generally bandpass with bandwidths in the range of 1–2
octaves [6, 12, 13, 16]. (These cells also have temporal response characteristics as well [5],
but for now we choose to address only the spatial aspects of the receptive fields.) Several
previous attempts have been made to account for these receptive field properties using linear
Hebbian learning rules that perform principal components analysis [10, 14, 18]. However,
as shown in figure 1, this approach fails to produce a full set of receptive fields that resemble
cortical simple cells.

Figure 1. Principal components calculated on 8× 8 image patches extracted from natural
scenes using Sanger’s rule [18]. The functions are not localized, and the vast majority do not
at all resemble any known cortical receptive fields. The first few principal components appear
‘oriented’ only by virtue of the fact that they are composed of a small number of low frequency
components (since the lowest spatial frequencies account for the greatest part of the variance in
natural scenes [7]), and reconstructions based solely on these functions will merely yield blurry
images.

A major limitation of linear Hebbian learning rules is that they are capable of learning
only from the linear, pairwise correlations among image pixels. As a consequence, these
schemes are incapable of learning from the localized, oriented, bandpass structures that occur
in natural images, all of which require higher-order statistics to characterize. We shall argue
that an appropriate objective for an efficient coding of natural scenes is to maximize the
sparseness of the representation, and we shall show that a network that learns sparse codes
for natural images succeeds in producing receptive fields with the desired properties.

2. Natural image structure

Natural images contain localized, oriented, and bandpass structures, which cannot be
characterized in terms of linear, pairwise correlations. The localized structures in natural
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images are characterized in Fourier terms by their phase spectrum. For example, a step edge,
which is a highly localized event in an image, will have its phases aligned across different
spatial frequencies, as illustrated in figure 2(a). However, the linear, pairwise correlations
characterize only the power spectrum, and so will be blind to this phase alignment. Oriented
structures in images, such as lines and edges, will also evade pairwise correlations because
they require at least three-point statistics to characterize. This fact is illustrated by the
squiggly-lines image in figure 2(b): synthesizing images with similar pairwise statistics
does not capture the local, oriented structure, but synthesizing images based on higher-
order statistics does capture this structure. Finally, the bandpass structure in natural scenes
cannot be characterized by linear, pairwise statistics because it too requires knowledge of
the phase spectrum. The presence of curved, fractal-like edges in natural images will tend
to produce local phase alignments in spatial frequency (as opposed to global alignments
with perfectly straight edges as in figure 2(a)). This is illustrated in figure 2(c). Field [9]
has shown that this alignment can best be captured by filters with approximately 1–2 octave
bandwidths.

The localized and compact distribution of energy in images suggests that they have
‘sparse structure’ [8]—that is, any given image can be represented with a relatively small
number of descriptors out of a much larger set to choose from (figure 3(a)). A reasonable
question to ask, then, is what happens if we maximize the sparseness of the image code?

3. Sparse coding

Because the response properties of simple cells are fairly linear, we choose to work with a
linear coding model for this stage of processing. An image,I (x, y), is modelled as a linear
superposition of (not necessarily orthogonal) basis functions,φi(x, y):

I (x, y) =
∑

i

ai φi(x, y) . (1)

Our goal is to find a set ofφ that forms a complete code (i.e. spans the input space) and
results in a sparse representation of images. That is, the probability distribution of activity
on any given coefficient should be highly peaked around zero, with heavy tails (figure 3(b)).
Such a distribution has low entropy, and so will also reduce statistical dependencies among
units [2].

We formulate the search for a sparse code as an optimization problem by constructing
the following cost functional to be minimized:

E(a, φ) =
∑
x,y

[
I (x, y) −

∑
i

ai φi(x, y)

]2

+ λ
∑

i

S

(
ai

σi

)
(2)

whereσ 2
i = 〈a2

i 〉. The first term measures how well the code describes the image, according
to mean square error, while the second term incurs a cost on activity so as to favour those
states in which the fewest coefficients carry the load. The choices forS(x) that we have
experimented with include−e−x2

, log(1 + x2), and |x|, and all yield qualitatively similar
results. In a Bayesian interpretation, the first term acts as the log likelihood, and the second
term acts as the log prior on the coefficients. Thus, different choices ofS(x) correspond
to different priors: log(1 + x2) corresponds to a Cauchy distribution,|x| corresponds to an
exponential distribution, and−e−x2

corresponds to a distribution with sparse shape (with
no precedent).
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Figure 2. Three forms of structure that occur in natural images. (a) Localized structures,
such as step edges, have phase-aligned Fourier components. (b) Oriented structures require at
least three-point statistics to characterize. To demonstrate this fact, two types of statistics were
collected on the squiggly-lines image shown (top), and images were synthesized from these
statistics. Collecting the joint probability distributions on all pairs of pixels within an 8-pixel
radius results in the image at the lower left, which does not reflect the oriented structure. By
contrast, collecting the joint 9-dimensional probability distribution within a 1-pixel radius (3×3
pixel blocks) results in the image at lower right, which successfully captures the local, oriented
structure. Images were synthesized by flipping bits to reduce the Kullback distance between
the desired and the actual probability distributions of the image. (c) Bandpass structure arises
because curved, fractal-like edges have only local phase alignment across spatial frequency (as
opposed to the global alignment that would occur with a perfectly straight edge as in (a). Shown
are cross-sections through ‘scale-space’ (a stack of continuous-wavelet filtered images, at four
different orientations) for the fractal contour above. One can readily see that the energy in
different spatial frequency bands migrates over position and orientation.
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Figure 3. Sparse coding. (a) An image would be represented by a small number of ‘active’
coefficients,ai , out of a large set. Which coefficients are active varies from one image to the
next. (b) The distribution of activity on any given unit should be peaked around zero with heavy
tails. Such a distribution will have low entropy, as opposed to a Gaussian distribution (broken
line) which has maximum entropy for the same variance.

Learning is accomplished by performing gradient descent on the total cost functional,
E. For each image presentation, theai evolve along the gradient ofE until a minimum is
reached:

ȧi = η

[
bi −

∑
j

Cij aj − λ

σi

S ′
(

ai

σi

)]
(3)

wherebi = ∑
x,y φi(x, y)I (x, y), Cij = ∑

x,y φi(x, y)φj (x, y), and η is a rate constant.
After a number of trials have been computed this way, theφi are updated by making an
incremental step along their gradient of〈E〉:

1φi(xm, yn) = ηw 〈[I (xn, ym) − Î (xn, ym)] ai〉 (4)

where Î is the reconstructed image,Î (xm, yn) = ∑
i ai φi(xm, yn), andηw is the learning

rate. The vector length (gain) of each basis function,φi , is adapted over time so as to
maintain equal variance on each coefficient.

There is a simple network interpretation of this system in that the value of each output
unit, ai , is determined from a combination of a feedforward input term,bi , a recurrent
term,

∑
j Cij aj , and a nonlinear self-inhibition term,S ′, that differentially pushes activity

toward zero. The output valuesai are then fed back through the functionsφi to form a
reconstruction image, and the weights evolve by doing Hebbian learning on the residual
signal.

The result of training a system of 144 basis functions on 12×12 image patches extracted
from natural scenes is shown in figure 4. The vast majority of basis functions are well
localized (with the exception of the low frequency functions which occupy a larger spatial
extent). Moreover, the functions are oriented and broken into different spatial frequency
bands. This result makes sense, because it simply reflects the fact, demonstrated previously,
that natural images contain localized, oriented structures with limited phase alignment across
spatial frequency.

4. Discussion

This work establishes a relation between the structure of natural images and the response
properties of cortical simple cells. The fact that these results have recently been replicated
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Figure 4. The set of 144 basis functions learned after training on 12× 12 image patches
extracted from natural scenes. Details are provided in [15]. Note that these functions represent
the feedforward weighting function contributing to each unit’s output, and hence are not strictly
equivalent to the unit’s ‘receptive field’ because the recurrence and sparseness terms of equation
(3) would also need to be taken into account. Mapping out the spatial response of each unit with
spots reveals receptive fields that have the same qualitative structure but are somewhat more
restricted spatially, which is expected because the effect of the sparseness term will be to make
each unit more ‘choosy’ about what it responds to.

by related models when sparseness is imposed (see Bell and Sejnowski [3, 4] and Harpur
and Prager [11], see this issue) provides a compelling functional explanation for simple
cell receptive field properties in terms of a sparse coding strategy. It seems reasonable that
other objectives of efficient coding, such as statistical independence (i.e. in terms of all
higher-order statistics, not just pairwise), may well be capable of producing similar results,
and we conjecture that the resulting output activity distribution in this case would also be
sparse. An important and exciting future challenge will be to extrapolate these principles
to higher cortical visual areas to provide predictions for heretofore unknown receptive field
properties.
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