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Stochastic Relaxation, Gibbs Distributions, and
the Bayesian Restoration of Images

STUART GEMAN AND DONALD GEMAN

Abstract-We make an analogy between images and statistical me-
chanics systems. Pixel gray levels and the presence and orientation of
edges are viewed as states of atoms or motecules in a lattice-like phys-
ical system. The assignment of an energy function in the physical sys-
tem determines its Gibbs distribution. Because of the Gibbs distribu-
tion, Markov random field (MRF) equivalence, this assignment also
determines an MRF image model. The energy function is a more conve-
nient and natural mechanism for embodying picture attributes than are
the local characteristics of the MRF. For a range of degradation mecha-
nisms, including blurring, nonlinear deformations, and multiplicative or
additive noise, the posterior distribution is an MRF with a structure
akin to the image model. By the analogy, the posterior distribution de-
fimes another (imaginary) physical system. Gradual temperature reduc-
tion in the physical system isolates low energy states ("annealing"), or
what is the same thing, the most probable states under the Gibbs dis-
tribution. The analogous operation under the posterior distribution
yields the maximum a posteriori (MAP) estimate of the image given the
degraded observations. The result is a highly parallel "relaxation" algo-
rithm for MAP estimation. We establish convergence properties of the
algorithm and we experiment with some simple pictures, for which
good restorations are obtained at low signal-to-noise ratios.

Index Terms-Annealing, Gibbs distribution, image restoration, line
process, MAP estimate, Markov random field, relaxation, scene model-
ing, spatial degradation.

I. INTRODUCTION
T HE restoration of degraded images is a branch of digital

picture processing, closely related to image segmentation
and boundary finding, and extensively studied for its evident
practical importance as well as theoretical interest. An analy-
sis of the major applications and procedures (model-based and
otherwise) through approximately 1980 may be found in
[47]. There are numerous existing models (see [341) and
algorithms and the field is currently very active. Here we
adopt a Bayesian approach, and introduce a "hierarchical,"
stochastic model for the original image, based on the Gibbs
distribution, and a new restoration algorithm, based on sto-
chastic relaxation and annealing, for computing the maximum
a posteriori (MAP) estimate of the original image given the de-
graded image. This algorithm is highly parallel and exploits
the equivalence between Gibbs distributions and Markov ran-
dom fields (MRF).
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The essence of our approach to restoration is a stochastic
relaxation algorithm which generates a sequence of images that
converges in an appropriate sense to the MAP estimate. This
sequence evolves by local (and potentially parallel) changes in
pixel gray levels and in locations and orientations of boundary
elements. Deterministic, iterative-improvement methods gen-
erate a sequence of images that monotonically increase the
posterior distribution (our "objective function"). In contrast,
stochastic relaxation permits changes that decrease the pos-
terior distribution as well. These are made on a random basis,
the effect of which is to avoid convergence to local maxima.
This should not be confused with "probabilistic relaxation"
("relaxation labeling"), which is deterministic; see Section X.
The stochastic relaxation algorithm can be informally de-

scribed as follows.
1) A local change is made in the image based upon the cur-

rent values of pixels and boundary elements in the immediate
"neighborhood." This change is random, and is generated by
sampling from a local conditional probability distribution.
2) The local conditional distributions are dependent on a

global control parameter T called "temperature." At low tem-
peratures the local conditional distributions concentrate on
states that increase the objective function, whereas at high
temperatures the distribution is essentially uniform. The limit-
ing cases, T= 0 and T= oo, correspond respectively to greedy
algorithms (such as gradient ascent) and undirected (i.e.,
"purely random") changes. (High temperatures induce a loose
coupling between neighboring pixels and a chaotic appearance
to the image. At low temperatures the coupling is tighter and
the images appear more regular.)
3) Our image restorations avoid local maxima by beginning

at high temperatures where many of the stochastic changes
will actually decrease the objective function. As the relaxation
proceeds, temperature is gradually lowered and the process
behaves increasingly like iterative improvement. (This gradual
reduction of temperature simulates "annealing," a procedure
by which certain chemical systems can be driven to their low
energy, highly regular, states.)
Our "annealing theorem" prescribes a schedule for lowering

temperature which guarantees convergence to the global max-
ima of the posterior distribution. In practice, this schedule
may be too slow for application, and we use it only as a guide
in choosing the functional form of the temperature-time de-
pendence. Readers familiar with Monte Carlo methods in sta-
tistical physics will recognize our stochastic relaxation algo-
rithm as a "heat bath" version of the Metropolis algorithm
[421. The idea of introducing temperature and simulating an-
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Tiealing is due to Cern' [8] and Kirkpatrick et al. [401 , both
of whomn used it for combinatorial optimization, including the
traveling salesman problem. Kirkpatrick also applied it to
computei- design.
Since our approach is Bayesiani it is model-based, with the

"model" captured by the prior distribution. Our models are
"hierarchical," by which we mean layered processes reflecting
the type and degree of a priori knowledge about the class of
images under study In this paper, we regard the original
image as a pair X (F, IJ) where F is the matrix of observable
pixel intensities and JI denotes a (dual) matrix of unobservable
edge elemiients. Thus the usual gray levels are considered a
marginal process. We refer to F as the intensity process and L,
as the line process. In future work we shall expand this model
by adjoining other, mainly geometric, attribute processes.
The degradation model allows tor noise, blurring, and some

nonlinearities, and hence is characteristic of most photochemi-
cal and photoelectric systems. More specifically, the degraded
image '(,t is of the torm O(H(F))O 'N, where H is the blurring
matrix, 0 is a possibly nonlinear (memoryless) transformation,
,is an independent noise field, and (i denotes any suitably in-

vertible operation, such as addition or multiplication. Surpris-
ingly, these nonlinearities do not affect the computational
burden.
To pin tlhings down, let us briefly discuss the Markovian

nature of the intensity process; similar remarks apply to the
line process, the pair (F, 1i), and the distribution of (F, IL)
conditional on the "data" 0X. Of course, all of this will be dis-
cussed in detail in the main body of the paper.
Let Zn {i(i, j):1 I< i, f < tn} denote the m X m integer lat-

tice; then F = {Fi,;} (i, j)e Zm, denotes the gray levels of
the original, digitized image. Lowercase letters will denote the
values assumed by these (random) variables; thus, for example,
{ f- f} stands for {F, - fi,i, (i, ) EZm}. We regard F as a
sample realization of a random field, usually isotropic and
homogeneous, and with significant correlations well beyond
nearest neighbors. Specifically, we model F as an MRF, or,
what is the same (see Section IV), we assume that the prob-
ability law of F is a Gibbs distribution. Given a neighborhood
system .f = (i, j) E Zm}, where Yi j C Zm denotes the
neighbors of (i, /), an MRF over (Zm, Jf) is a stochastic process
indexed by Zm for which, for every (i, j) and every f,

-P(Fi, i =fis jI -F5k I = fk, 1, (k, 1) (,j))
= P(ffI, =fi, j S,k, I =.fk, 1,(k, 1) Ez Yi, j) (1.1)

The MRF-Gibbs equivalence provides an explicit formula for
the joint probability distribution P(F =f) in terms of an en-
ergy function, the choice of which, together with f, supplies
a powerful mechanism foi- modeling spatial continuity and
oth r scene features.
The relaxation algorithm is designed to maximize the condi-

tional probability distribution of (F, LX) given the data G =g
i.e., find the mode of the posterior distribution P(X = xI t; =
g). This form of Bayesian estimation is known as maximum
a posferiori or MAP estimation, or sometimes as penalized
maximum likelihood because one seeks to maximize log P(G =

gt x- x) + log P( X x) as a function of x; the second term is

the "penalty term." MAP estimation has been successfully
employed in special settings (see, e.g., Hunt [31] and Hansen
and Elliott [25] ) and we share the opinion of many that the
MAP formulation (and a Bayesian approach in general; see also
[24], [43], [45] ) is well-suited to restoration, particularly for
handling general forms of spatial degradation. Moreover, the
distribution of ('7 itself need not be known, which is fortunate
due to its usual complexity. On the other hand, MAP estima-
tion clearly presents a formidable computational problem.
The number of possible intensity images is Lm2, where L de-
notes the number of allowable gray levels, which rules out any
direct search, even for small (m = 64), binary (L = 2) scenes.
Consequently, one is usually obliged to make simplifying
assumptions about the image and degradation models as well
as compromises at the computational stage. Here, the com-
putational problem is overcome by exploiting the pivotal ob-
servation that the posterior distribution is again Gibbsian with
approximately the same neighborhood system as the origi-
nal image, together with a sampling method which we call
the Gibbs Sampler. Indeed, our principal theoretical con-
tribution is a general, practical, and mathematically coherent
approach for investigating MRF's by sampling (Theorem A),
and by computing modes (Theorem B) and expectations
(Theorem C).
The Gibbs Sampler generates realizations from a given MRF

by a "relaxation" technique akin to site-replacement algo-
rithms in statistical physics, such as "spin-flip" and "exchange"
systems. The prototype is due to Metropolis et al. [42]; see
also [7] , [18], and Section X. Cross and Jain [12] use one of
these algorithms invented for studying binary alloys. ("Re-
laxation labeling" in the sense of [13], [30], [46], [47] is
different; see Section X.) The Markov property (1.1) permits
parallel updating of the line and pixel sites, each of which is
"refreshed" according to a simple recipe determined by the
governing distribution. Thus, both parts of the MRF-Gibbs
equivalence are exploited, for computing and modeling, re-
spectively. Moreover, minimum mean-square error (MMSE)
estimation is also feasible by using the (temporal) ergodicity of
the relaxation chain to compute means w.r.t. the posterior dis-
tribution. However, we shall not pursue this approach.
We have used a comparatively slow, raster scan-serial version

of the Gibbs Sampler to generate images and restorations (see
Section XIII). But the algorithm is parallel; it could be exe-
cuted in essentially one-half the time with two processors run-
ning simultaneously, or in one-third the time with three, and
so on. The full parallel potential is realized by assigning one
(simple) processor to each site of the intensity process and to
each site of the line process. Whatever the number of pro-
cessors, parallel implementation is made feasible by a small
communications requirement among processors. The commu-
nications burden is related to the neighborhood size of the
graph associated with the image model, and herein lies much
of the power of the hierarchical structure: although the field
model X = (F, L) has a local graph structure, the marginal
distribution on the observable intensity process F has a com-
pletely connected graph. The introduction of a hierarchy
dramatically expands the richness of the model of the ob-
served process while only moderately adding to the computa-
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tional burden. We shall return to these points in Sections IV
and XI.
The MAP algorithm depends on an annealing schedule,

which refers to the (sufficiently) slow decrease of a ("con-
trol") parameter T that corresponds to temperature in a physi-
cal system. As T decreases, samples from the posterior distri-
bution are forced towards the minimal energy configurations;
these correspond to the mode(s) of the distribution. Theorem
B makes this precise, and is, to our knowledge, the first theo-
retical result of this nature. Roughly speaking, it says that if
the temperature T(k) employed in executing the kth site re-
placement (i.e., the kth image in the iteration scheme) satisfies
the bound

log(1 +k)
for every k, where c is a constant independent of k, then with
probability converging to one (as k -*co), the configurations
generated by the algorithm will be those of minimal energy.
Put another way, the algorithm generates a Markov chain
which converges in distribution to the uniform measure over
the minimal energy configurations. (It should be emphasized
that pointwise convergence, i.e., convergence with probability
one, is in general not possible.) These issues are discussed in
Section XII, and the algorithm is demonstrated in Section XIII
on a variety of degraded images. We also discuss the nature of
the constant c in regard to practical convergence rates. Basi-
cally, we believe that the logarithmic rate is best possible.
However, the best (i.e., smallest) value of c that we have ob-
tained to date (see the Appendix) is far too large for compu-
tational value and our restorations are actually performed with
small values of c. As yet, we do not know how to bring the
theory in line with experimental results in this regard.
The role of the Gibbs (or Boltzmann) distribution, and other

notions from statistical physics, in the construction of "expert
systems" is expanding. To begin with, we refer the reader
to [21] for the original formulation of our computational
method and of a general approach to expert systems based on
maximum entropy extensions. As previously mentioned,
Cerny [8] and Kirkpatrick et al. [40] introduced annealing
into combinatorial optimization. Other examples include the
work of Cheeseman [9] on maximum entropy and diagnosis
and of Hinton and Sejnowski [29] on neural modeling of in-
ference and learning.
This paper is organized as follows. The degradation model is

described in the next section, and the undegraded image mod-
els are presented in Section IV after preliminary material on
graphs and neighborhood systems in Section IIl. In particular,
Section IV contains the definitions of MRF's, Gibbs distribu-
tions, and the equivalence theorem. Due to the plethora of
Markovian models in the literature, we pause in Section V to
compare ours to others, and in Section VI to explain some
connections with maximum entropy methods. In Section VII
we raise the issues of parameter estimation and model selec-
tion, and indicate why we are avoiding the former for the time
being. The posterior distribution is computed in Section VIII
and the corresponding optimization problem is addressed in
Section IX. The concept of stochastic relaxation is reviewed

in Section X, including its origins in physics. Sections XI and
XII are devoted to the Gibbs Sampler, dealing, respectively,
with its mechanical and mathematical workings. Our experi-
mental results appear in Section XIII, followed by concluding
remarks.

II. DEGRADED IMAGE MODEL
We follow the standard modeling of the (intensity) image

formation and recording processes, and refer the reader to
[31] or [471 for better accounts of the physical mechanisms.
Let H denote the "blurring matrix" corresponding to a shift-

invariant point-spread function. The formation of F gives rise
to a blurred image H(F) which is recorded by a sensor. The
latter often involves a nonlinear transformation of H(F),
denoted here by 0, in addition to random sensor noise N =
{i, 4j, which we assume to consist of independent, and for
definiteness, Gaussian variables with mean , and standard de-
viation a.
Our methods apply to essentially arbitrary noise processes

N i= {rji,j}, discrete or continuous. However, computational
feasibility requires that the description of N as an MRF (this
can always be done; see Section IV) has an associated graph
structure that is approximately "local"; the same requirement
is applied to the image process X = (F, L). For clarity, we
forgo full generality and focus on the traditional Gaussian
white noise case. Extension to a general noise process is
mostly a matter of notation.
The degraded image is then a function of O(H(F)) and N, -say

P(k(H(F)), N), for example, addition or multiplication. (To
compute the posterior distribution, we only need to assume
that b -+ t(a, b) is invertible for each a.) For notational ease,
we will write

G = q(H(F))ON.

At the pixel level, for each (i, i) E Zm,

Gi,j=o £ H(i- k,j- I)Fk,l) 71ij-
(k, I)

(2.1)

(2.2)

The mathematical results require an additional assumption,
namely, that F 'and N be independent as stochastic processes
(and likewise for L and N) and we assume this henceforth.
This is customary, although we recognize the limitation in cer-
tain contexts, e.g., for nuclear scan pictures.
For computational purposes, the degree of locality of F

should be approximately preserved by (2.1), so that the neigh-
borhood systems for the prior and posterior distributions on
(F, L) are comparable. This is achieved when H is a simple
convolution over a small window. For instance, take

H(k,1)= -D k=0,l=0
16 Ikl, |I A 1, (k, 1)*(0, 0)

(2.3)

so that the intensity at (i, j) is weighted equally with the aver-
age of the eight nearest neighbors. The function 0 is unre-
stricted, bearing in mind that the true noise level depends on
0, 0, and a. Typically, 0 is logarithmic (film) or algebraic
(TV).
An important special case, which occurs in two-dimensional

(2-D) signal theory, is the segmentation of noisy images into
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coherent regions. The usual model is

G = F + N (2.4)

where N is white noise and the number of intensity levels is
small. This is the model entertained by Hansen and Elliott
[25] for simple, binary MRF's F, and by many other workers
with varying assumptions about F; see [14], [16], [17]. In
this case, namely (2.4), we can extract simple images under ex-
tremely low signal-to-noise ratios.
The full degraded image is (G, L); that is, the "line process"

is not transformed.

III. GRAPHS AND NEIGHBORHOODS

Here and in Section IV we present the general theory of
MRF's on graphs, focusing on the aspects and examples which
figure in the experimental restorations. The level of abstrac-
tion is warranted by the variety of MRF's, graphs, and prob-
ability distributions simultaneously under discussion.
Let S = {s, 2, * * *, SN} be a set of sites and let = S

s E S} be a neighborhood system for S, meaning any collec-
tion of subsets of S for which 1) s 0 gs and 2) sEG , r E

gs. Obviously, gs is the set of neighbors of s and the pair
{S, g } is a graph in the usual way. A subset C C S is a clique
if every pair of distinct sites in C are neighbors; e denotes the
set of cliques.
The special cases below are especially relevant.
Case 1: S = Zm This is the set of pixel sites for the intensity

process F; {Sl, S2, * * *, sN}, N.= m2, is any ordering of the
lattice points. We are interested in homogeneous neighbor-
hood systems of the form

Yc= {:i,ji(ii ) cZm ; J: , j

= {(k, 1)eZm :0< (k- i)2 + (1- )2 c}.

Notice that sites at or near the boundary have fewer neighbors
than interior ones; this is the so-called "free boundary" and is
more natural for picture processing than torodial lattices and
other periodic boundaries. Fig. 1(a), (b), (c) shows the (in-
terior) neighborhood configurations for c = 1, 2, 8; c = 1 is the
first-order or nearest-neighbor system common in physics, in
which Yi,i= {(i, j - I), (i,j+ 1), (i- l,5j), (i+ l,j)},withad-
justments at the boundaries. In each case, (i, j) is at the cen-
ter, and the symbol o stands for a neighboring pixel. The
cliques for c = 1 are all subsets of Zm of the form {(i, j)},
{(i, j), (i, f + 1)} or {(i, j), (i + 1, j)}, shown in Fig. 1(d). For
c = 2, we have the cliques in Fig. 1(d) as well as those in Fig.
1(e). Obviously, the number of clique types grows rapidly
with c. However, only small cliques appear in the model for
F actually employed in this paper; indeed, the degree of prog-
ress with only pair interactions is somewhat surprising. None-
thel-ss, more complex images will likely necessitate more com-
plex energies. Our experiments (see Section XIII) suggest that
much of this additional complexity can be accommodated
while maintaining modest neighborhood sizes by further de-
veloping the hierarchy.
Case 2: S = Dm, the "dual" m X m lattice. Think of these

sites as placed midway between each vertical or horizontal pair
of pixels, and as representing the possible locations of "edge

0 0 00o0000 0.00 0 0.0 0
0 0 00 00 00 0

0=1 0=2 ~~~0=10
C=l C=2 C= 8

(a) tb) (c)

0 0-U

(d) (e)

0 o BX o o 0

x x x
O XO XO 0 0 0

(f) (g)
Fig. 1.

elements." Shown in Fig. l(f) are six pixel sites together with
seven line sites denoted by an X. The six surrounding X's are
the neighbors of the middle X for the neighborhood system we
denote by 2 = {fd, dE Dm}. Fig. 1(g) is a segment of a real-
ization of a binary line process for which, at each line site,
there may or may not be an edge element. We also consider
line processes with more than two levels, corresponding to
edge elements with varying orientations.
Case 3: S = Zm U Dmi. This is the setup for the field (F, L).

Zm has neighborhood system Y1 (nearest-neighbor lattice) and
Dm has the above-described system. The pixel neighbors of
sites in Dm are the two pixels on each side, and hence each
(interior) pixel has four line site neighbors.

IV. MARKOV RANDOM FIELDS AND
GIBBS DISTRIBUTIONS

We now describe a class of stochastic processes that includes
both the prior and posterior distribution on the original image.
In general, this class of processes (namely, MRF's) is neither
homogeneous nor isotropic, assuming the index set S has
enough geometric structure to even define a suitable family of
translations and rotations. However, the particular models we
choose for prior distributions on the original image are in fact
both homogeneous and isotropic in an appropriate sense.
(This is not the case for the posterior distribution.) We refer
the reader to Section XIII for a precise description of the prior
models employed in our experiments, and in particular for spe-
cific examples of the role of the line elements.
As in Section III, {S, G} denotes an arbitrary graph. Let

X = {X, s E S} denote any family of random variables in-
dexed by S. For simplicity, we can assume a common state
space, say A_ {0, 1, 2,- * * ,L - I}, so that XSEA for all s;
the extension to site-dependent state spaces, appropriate when
S consists of both line and pixel sites, is entirely straightfor-
ward (although not merely a notational matter due to the
"positivity condition" below). Let Q be the set of all possible
configurations:

Q2 = {co = (xsl, * *. 1 xsN): xs, GE A, I < i <N}.
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As usual, the event {Xsl = xS1, , XSN = XSN} is abbreviated
{X = (}.

X is an MRF with respect to g if

P(X = )>0 for all co C Q; (4.1)

P(Xs= xs1Xr = xr,r S) =P(XS= Xs Xs = Xr r Er s)
(4.2)

for every s E S and (xs1, * , xN) E Q2. Technically, what is
meant here is that the pair { X, P} satisfies (4.1) and (4.2) rela-
tive to some probability measure on Q2. The collection of
functions on the left-hand side of (4.2) is called the local char-
acteristics of the MRF and it turns out that the (joint) prob-
ability distribution P(X = c) of any process satisfying (4.1) is
uniquely determined by these conditional probabilities; see,
e.g., [6, p. 195].
The concept of an MRF is essentially due to Dobrushin [15]

and is one way of extending Markovian dependence from 1-D
to a general setting; there are, of course, many others, some of
which will be reviewed in Section V.
Notice that any X satisfying (4.1) is an MRF if the neighbor-

hoods are large enough to encompass the dependencies. The
utility of the concept, at least in regard to image modeling, is
that priors are available with neighborhoods that are small
enough to ensure feasible computational loads and yet still
rich enough to model and restore interesting classes of images
(and textures: [12]).
Ordinary 1-D Markov chains are MRF's relative to the

nearest-neighbor system on S ={1, 2, - --, N} (i.e., 0l = {2},
=i {i - 1, i + 1} 2 A i <N - 1, AN = {N - 41) if we assume

all positive transitions and the chain is started in equilibrium.
In other words, the "one-sided" Markov property

P(Xk =XkfXj =xj,i<k- 1)=P(Xk =XklXkl-Xk-l)
and the "two-sided" Markov property

P(Xk =Xk IXi= Xj, j V k) = P(Xk = Xk Xj =Xj,iE k)

are equivalent. Similarly for an rth order Markov process on
the line with respect to the r nearest neighbors on one side and
on both sides. (This appears to be doubted in [I] but follows,
eventually, from straightforward calculations or immediately
from the Gibbs connection.)
Gibbs models were introduced into image modeling by

Hassner and Sklansky [28], although the treatment there is
mostly expository and limited to the binary case.
A Gibbs distribution relative to {S, g} is a probability mea-

sure ir on Q. with the following representation:

7r(co) = - eU(w)IT (4.3)z

where Z and Tare constants and U, called the energy function,
is of the form

UM c= E VC . (4.4)
c c(

Recall that C denotes the set of cliques for g. Each Vc is a
function on 2 with the property that Vc(co) depends only
on those coordinates x5 of co for which s E C. Such a fam-

ily {Vc, CC C} is called a potential. Z is the normalizing
constant:

(4.5)Z * v e-U(()/T
-L

and is called the partition function. Finally, T stands for
"temperature"; for our purposes, T controls the degree of
"peaking" in the "density" ir. Choosing T "small" exaggerates
the mode(s), making them easier to find by sampling; this is
the principle of annealing, and will be applied to the posterior
distribution ir(f, 1) = P(F = f, L = I GG = g) in order to find the
MAP estimate. Of course, we will show that ir(f, 1) is Gibbsian
and identify the energy and neighborhood system in terms of
those for the priors. The choice of the prior distributions, i.e.,
of the particular functions Vc for the image model r(Co) =
P(X = c), will be discussed later on; see Section VII for some
general remarks and Section XIII for the particular models em-
ployed in our experiments.
The terminology obviously comes from statistical physics,

wherein such measures are "equilibrium states" for physical
systems, such as ferromagnets, ideal gases, and binary alloys.
The Vc functions represent contributions to the total energy
from external fields (singleton cliques), pair interactions
(doubletons), and so forth. Most of the interest there, and in
the mathematical literature, centers on the case in which S is
an infinite, 2-D or 3-D lattice; singularities in Z may then
occur at certain ("critical") temperatures and are associated
with "phase transitions."
Typically, several free parameters are involved in the specifi-

cation of U, and Z is then a function of those parameters-
notoriously intractable. For more information see [3], [5],
[6], [23], [32],and [39].
The best-known of these lattice systems is the Ising model,

invented in 1925 by E. Ising [33] to help explain ferromag-
netism. Here, S = Zm and 9 = 1 , the nearest-neighbor system.
The most general form of U is then

U(c) = ZVpi,m}(x1,j) + ZV{(fUJ), (i+,j)}(Xi,j,Xi+1,j)
+ f 0, D, (i,j+ 1)}(xi, jxi,x+ ) (4.6)

where the sums extend over all (i, j) EZm for which the indi-
cated cliques make sense. The Ising model is the special case

of (4.6) in which X is binary (L = 2), homogeneous (= strictly
stationary), and isotropic (= rotationally invarient):

u((.,)=a EXi,ij+ ( xi jxi+1 j+ Zxi,jxi,j+1) (4.7)
for some parameters al and f, which measure, respectively, the
external field and bonding strengths.
Returning to the general formulation, recall that the local

characteristics

1T(XsIXr, r :$ s) = 1E(CA) s E S, X EQ

x5EA

uniquely determine ir for any probability measure 7r on Q,
r(co) > 0 for all co. The difficulty with the MRF formulation
by itself is that

i) the joint distribution of the Xs is not apparent;
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ii) it is extremely difficult to spot local characteristics, i.e.,
to determine when a given set of functions V(xsJXr, r $
S), S E S, (xsl, - - , xsN) C Q2, are conditional probabili-
ties for some (necessarily unique) distribution on Q.

For example, Chellappa and Kashyap [10] allude to i) as a
disadvantage of the "conditional Markov" models. See also
the discussion in [6] . In fact, these apparent limitations to
the MRF formulation have been noted by a number of authors,
many of whom were obviously not aware of the following
theorem.
Theorem: Let q be a neighborhood system. Then X is an

MRF with respect to 9 if and only if nT(c) =P(X = co) is a
Gibbs distribution with respect to 9.
Among other benefits, this equivalence provides us with a

simple, practical way of specifying MRF's, namely by specify-
ing potentials, which is easy, instead of local characteristics,
which is nearly impossible. In fact, with some experience, one
can choose U's in accordance with the desired local behavior,
at least at the intensity level. In short, the modeling and con-
sistency problems of i) and ii) are eliminated.
Proofs may be found in many places now; see, e.g., [39] and

the references therein, or the approach via the Hammersley-
Clifford expansion in [6]. An influential discussion of this
correspondence appears in Spitzer's work, e.g., [48] . Explicit
formulas exist for obtaining U from the local characteristics.
Conversely, the local characteristics of 1r are obtained in a
straightforward way from the potentials: use the defining
ratios and make the allowable cancellations. Fix s E S, cX =
(Xsl X * , XsN) C Q, and let wX denote the configuration
which is x at site s and agrees with co everywhere else. Then if
7r(w) = P(X = co) is Gibbsian,

P(Xs=xsIXr=xrrs)=Zsexp T
C: sEC

Zs- E exp
x E A T E Vc(wX).C:sGC

Vc(Q -)

(4.8)

(4.9)

Notice that the right-hand side of (4.8) only depends on xS
and on xr, r C 9s, since any site in a clique containing s must
be a neighbor of s. These formulas will be used repeatedly to
program the Gibbs Sampler for local site replacements.
For the Ising model, the conditional probability that Xi j=

xi,], given the states at S\{i, j}, or equivalently, just the four
nearest neighbors, reduces to

e-Xij(a + Vi, ti)

1 +( +Oti, i)

where vi,j = xi,H 1j +x1,X+i +x1+ This is also
known as the autologistic model and has been used for texture
modeling in [12]. More generally, if the local characteristics
are given by an exponential family and if Vc(&) 0 for I C| >
2, then the pair potentials always "factor" into a product of
two like terms; see [6].
We conclude with some further discussion of a remark made

in Section 1: that the hierarchical structure introduced with

the line process L, expands the graph structure of the marginal
distribution of the intensity process F. Consider first an arbi-
trary MRF X with respect to a graph {S, 9 }. Fix r E S and let
X = {Xs, s C S, s = r}. The marginal distribution P of X is de-
rived from the distribution P of X by summing over the range
of Xr. Use the Gibbs representation for P and perform this
summation: the resulting expression for P can be put in the
Gibbs form, and from this the neighborhood system on S
S\{r} can be inferred. The conclusion of this exercise is that
S1, S2 CS are, in general, neighbors if either i) they were
neighbors in S under 9 or ii) each is a neighbor of r E S under
9. Now let X = (F, L), with neighborhood system defined at
the end of Section III. Successive summations of the distribu-
tion of X over the ranges of the elements of L yields the margi-
nal distribution of the observable intensity process F. Each
summation leaves a graph structure associated with the margi-
nal distribution of the remaining variables, and this can be re-
lated to the original neighborhood system by following the
preceding discussion of the general case. It is easily seen that
when all of the summations are performed, the remaining
graph is completely connected; under the marginal distribution
of F, all sites are neighbors. This calculation suggests that sig-
nificant long-range interactions can be introduced through the
development of hierarchical structures without sacrificing the
computational advantages of local neighborhood systems.

V. RELATED MARKOV IMAGE MODELS
The use of neighborhoods is, of course, pervasive in the lit-

erature: they offer a geometric framework for the clustering of
pixel intensities and for many types of statistical models. In
particular, the Markov property is a natural way to formalize
these notions. The result is a somewhat bewildering array of
Markov-type image models and it seems worthwhile to puase
to relate these to MRF's. The process under consideration
is F = {Fi,j, (i, j) CZm}, the gray levels, or really any pixel
attribute.
An early work in this direction is Abend, Harley and Kanal

[1] about pattern classification. Among many novel ideas,
there is the notion of a Markov mesh (MM) process, in which
the Markovian dependence is causal: generally, one assumes
that, for all (i,j) and f,

P(Fi,i = fi1,i=f,,(k, IE(Ak,j)
= P(Fi, i =fi, IFk,I=fk,1, (k,1) GBi, j) (5.1)

vwsiere.B j CAi,jC{(k,l):k<iorl<j}. A common exam-

ple is Bi, = {(i - 1, j), (i - 1, j- 1), (i, j - 1)}. Besag [6],
Kanal [37], and Pickard [44] also discuss such "unilateral"
processes, which are usually a subclass of MRF's, although the
resulting (bilateral) neighborhoods can be irregular. Anyway,
for MM models the emphasis is on the causal, iterative aspects,
including a recursive representation for the joint probabilities.
Incidentally, a Gibbs type description of rth order Markov
chains is given in [1]; of course, the full Gibbs-MRF equiva-
lence is not perceived and was not for about five years. Derin
et al. [14] model Fl as an MM process and use recursive Bayes
smoothing to recover F from a noisy version F} + N; the algo-
rithms exploit the causality to maximize the univariate poste-
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rior distribution at each pixel based on the data over a strip
containing it, and are very effective at low S/N ratios for some

simple images.

Motivated by a paper of Levy [41], Woods [51] defined
"P-Markov" processes for the resolution of wavenumber spec-

tra. The definition involves two spatial regions separated by a

"boundary" of width P, and correspond to the past, future,
and present in 1-D. Woods also considers a family of "wide-
sense" Markov fields of the form

Fi, = ok, IFi-k,j- I+ Ui,j (5.2)
(k, I) E Wp

where Wp = {(k, 1):0< k2 +12 P}, Ok,I are the MMSE co-

efficients for projecting Fi, i on {Fk, l, (k, 1) E (i, j) + Wp},
and {Ui,j} is the error, generally nonwhite. The main theo-
retical result is that if {Ui,j} is homogeneous, Gaussian, and
satisfies a few other assumptions, then F is Gaussian, P-Markov
and vice-versa. In general, there are consistency problems
and the P-Markov property is hard to verify. In the nearest-
neighbor case, one gets a Gaussian MRF.
Other "wide-sense" Markov processes appear in Jain and

Angel [35] and Stuller and Kurz [49]. The assumptions
in [35] are a nearest-neighbor system, white noise, and no

blur; restoration is achieved by recursively filtering the rows

{Fi, i 1'=, which form a vector-valued, second-order Markov
chain, to find the optimal interpolator of each row. In [49],
causality is introduced and earlier work is generalized by con-

sidering an arbitrary "scanning pattern."
The "spatial interaction models" in Chellappa and Kashyap

[10], [38] satisfy (5.2) for general coefficients and W's. The
model is causal if W lies in the third quadrant. The authors
consider "simultaneous autoregressive" (SAR) models, wherein
the noise is white, and "conditional Markov" (CM) models,
wherein the "bilateral" Markov property holds (i.e., (1.1) with
Yi, i = (i, j) + W) in addition to (5.2), and the noise is non-

white. Thus, the CM models are MRF's, although in [10],
[38] the boundary of Zm is periodic, and hence boundary
conditions must be adjoined to (5.2). Given any (homoge-
neous) SAR process there exists a unique CM process with the
same spectral density, although different neighborhood struc-
ture. The converse holds in the Gaussian case but is generally
false (see the discussion in Besag [6]). MMSE restoration of
blurred images with additive Gaussian noise is discussed in
[10] ; the original image is SAR or CM, usually Gaussian.
Finally, Hansen and Elliott [25] and Elliott et al. [17] de-

sign MAP algorithms for the segmentation of remotely sensed
data with high levels of additive noise. The image model is a

nearest-neighbor, binary MRF. However, the autologistic form
of the joint distribution is not recognized due to the lack of
the Gibbs formulation. The conditional probabilities are ap-

proximated by the product of four 1 -D transitions, and seg-

mentation is performed by dynamic programming, first for
each row and then for the entire images. More recent work in

Elliott et al. [16] is along the same lines, namely MAP esti-
mation, via dynamic programming, of very noisy but simple
images; the major differences are the use of the Gibbs formula-
tion and improvements in the algorithms. Similar work, ap-

plied to boundary finding, can be found in Cooper and Sung

[11], who use a Markov boundary model and a deterministic
relaxation scheme.

VI. MAXIMUM ENTROPY RESTORATION

There are several contact points. The Gibbs distribution can
be derived (directly from physical principles in statistical me-
chanics) by maximizing entropy: basically, it has maximal en-
tropy among all probability measures (equilibrium states) on
Q with the same average energy. Thus it is no accident that,
like maximum entropy (ME) methods, ours are well-suited to
nonlinear problems; see [50] . Moreover, based on the success
of ME restoration (along, the lines suggested by Jaynes [36] )
for recovering randomly pulsed objects (cf. Frieden [19] ), we
intend in, the future to analyze such data (e.g., starfield photo-
graphs) by our methods.
We should also like to mention the interesting observation of

Trussell [50] that conventional ME restoration is a special case
of MAP estimation in which the prior distribution on F is

P(F = f) = exp (-,3 fi, log fi, ) (normalizing constant).
By "conventional ME," we refer to maximizing the entropy

fi, i log fi,i subject to Er2b = constant (-, is here again
the noise process); see [2]. Other ME methods (e.g., [19]) do
not appear to be MAP-related.

VII. MODEL SELECTION AND PARAMETER ESTIMATION
The quality of the restoration will clearly depend on choices

made at the modeling stage, in our case about specific energy
types, attribute processes, and parameters. Cross and Jain
[12] use maximum likelihood estimation in the context of
Besag's [6] "coding scheme," as well as standard goodness-of-
fit tests, for matching realizations of autobinomial MRF's to
real textures. Kashyap and Chellappa [38] introduce some
new methods for parameter estimation and the choice of
neighborhoods for the SAR and CM models, mostly in the
Gaussian case. These are but two examples.
For uncorrupted, simple MRF's, the coding methods do

finesse the problem of the partition function. However, for
more complex models and for corrupted data, we feel that the
coding methods are ultimately inadequate due to the complex-
ity of the distribution of G. This view seems to be shared by
other authors, although in different contexts. Of course, for
MRF's, the obstacles facing conventional statistical inference
due to Z have often been noted. Even for the Ising model,
analytical results are rare; a famous exception is Onsager's
work on the correlational structure.
At any rate, we have developed a new method [20] for esti-

mating clique parameters from the "noisy" data, and this will
be implemented in a forthcoming paper. For now, we are
obliged to choose the parameters on an ad hoc basis (which is
common), but hasten to add that the quality of restoration
does not seem to have been adversely affected, probably due
to the relative simplicity of the MRF's we actually use for the
line and intensity processes; see Section XIII.
One should also address the general choice of ir and . This

is really quite different than parameter estimation and some-
what related to "image understanding": how does one incor-
porate "real-world knowledge" into the modeling process? In
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image interpretation systems, various semantical and hierarchi-
cal models have been proposed (see, e.g., [26]). We have
begun our study of hierarchical Gibbs models in this paper. A
general theory of interactive, self-adjusting models that is prac-
tical and mathematically coherent may lie far ahead.

VIII. POSTERIOR DISTRIBUTION
We now turn to the posterior distribution P( -l f, L =1

g) of the original image given the "data" g. In this section we
take S = Z1n U Dmi, the collection of pixel and line sites, with
some neighborhood system 9 {= , s ES}; an example of
such a "mixed" graph was given in Section III. The configura-
tion space is the set of all pairs w = (f, 1) where the compo-
nents of f assume values among the allowable gray levels and
those of I among the (coded) line states.
We assume that \ is an MRF relative to {S, 9 } with corre-

sponding energy function U and potentials { Vc}:

P(X--F= f1 = 1) = e-Uff, I)ITIZ
U(f, ) ZL Vc(f,l)

c

For convenience, take T I
Recall that CY -(H(F)) (0l , where N is white Gaussian

noise with mean , and variance a2 and is independent of X.
We emphasize that what follows is easily extended to pro-

cesses {N that are more general MRF's, although we still require
that N be independent of N. The operation 0 is assumed in-
vertible and we will write fN = O(F(,f(H(F)))= {4, s CZ
to indicate this inverse.
Let J , s C Zm, denote the pixels which affect the blurred

image H( 1") at s. For instance, for the H in (2.3), Rs is the 3 X
3 square centered at s. Observe that 45s, s C Zm, depends only
on g, and {tf, t E Hs}. By the shift-invariance of H, J(r+s =
s +Jr where JR C Z, s + r CZm, and s + {r is understood to
be intersected with Zm, if necessary. In addition, we will as-
sumne that {i(s} is "symmetric" in that r C J(%> -r C Ho0.
Then the collection {J{s\{s}, s EZm} is a neighborhood sys-
tem over Z, Let H2 denote the second-order system, i.e.,

y2S U Jr, ScZm
r & Rs~

Then it is not hard to see that { J2 \ {s}, s C Zm } is also a neigh-
borhood system. Finally, set 9P = {9P, s C S} where

s E Dm
(8.1)

'SU12\{s}, sCZm.

The "P" stands for "posterior"; some thought shows that 9 p

is a neighborhood system on S.
Let .tEC M(M = N2) have all components = p and let 11 * 11

denote the usual norm in RlM: |V||2 = 1M V2
Theorem: For each g fixed, P(X = (I 7 = g) is a Gibbs dis-

tribution over {S, 9p} with energy function

UP(f, I) = U(f, l) + I au - (F(g, O(H(f))) | 2/2 U2. (8.2)

P(G=gfX =w)P(X=w)
P(i = g)

(8.3)

for all X = (f, 1), for each g.
Since P( = g) is a constant and P( X = w) = eU(w)/Z, the

key term is

P( (, = g\=w) = P(H(H( t ))0D`N = gI 1-' f,1= 1)
= P(QN = ((g, O(H(f))) |= f, 1=1)

=P(N = 'I(g, q(H(f))))

(since N is independent of IF and 1)

(27ra2)M/2 exp (-2) fu - f112
We will write (F for (F(g, O(H(f))). Collecting constants we
have, from (8.3),

P(X = (', = g) = e UP(w)/ZP

for UP as in (8.2); Zp is the usual normalizing constant (which
will depend on g). It remains to determine the neighborhood
structure.

Intuitively, the line sites should have the same neighbors
whereas the neighbors 9. of a pixel site s C Zm should be aug-
mented in accordance with the blurring mechanism.
Take s C Din. The local characteristics at s for the posterior

distribution are, by (8.2),

P(Ls=lsILr=lr,r7 srCDm,s =f, C Dg)

-e~u(b* e-U(fl)
E e-UP(f ) EZ eU(ff, 1)
Is is

where the sum extends over all possible values of Ls. Hence
ss

For s CZM, the term in (8.2) involving (F does not cancel
out. Now (D(g, 4(H(f))) = {(Fs, s CZm} and let us denote the
dependencies in (Ds by writing (F, = (Ds(gs;ft, t CE Ys). Then

P(F, f=5 =Fr rr s,r CZ,1,= 1 =g)
-upff, I)

e-UP(f, ) (t )
fs

U(f, I) + Z (r - p)V/2uJ2.
r E- Zm

Decompose UP as follows:

U.P(f, ) = VC(f, I)
C:S&C-

+ (2u72) Z1E ((Dr(gr;ft,tJr)t u)2
r : s E Hr

+ Z Vc(f, l)
C:sc

(8.4)

Proof: Using standard results about "regular conditional
expectations," we can and do assume that

+ (2or2)-1 , (4,(g,; ft, t EJr) - p)2.
r:s1 J,r

P(x = WI c =g)=-91

q p =
.S.

,c" S
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Since the last two terms do not involve f, (remember that Vc
only depends on the sites in C), the ratio in (8.4) depends only
on the first two terms above. The first term depends only on
coordinates of (f, 1) for sites in 9,(s C Ce CC g) and the
second term only on sites in

U H{r U {r-Js
r:sEGr rE S

Hence, g' = gs U J{2\{s}, as asserted in the theorem. [

IX. THE COMPUTATIONAL PROBLEM

The posterior distribution P(X = coIg) is a powerful tool for
image analysis; in principle, we can construct the optimal
(Bayesian) estimator for the original image, examine images
sampled from P(\ = cog), estimate parameters, design near-
optimal statistical tests for the presence or absence of special
objects, and so forth. But a conventional approach to any of
these involves prohibitive computations. Specifically, our job
here is to find the value(s) of co which maximize the posterior
distribution for a fixed g, i.e., minimize

U(f, l) + jItt (g, k(H(f))) I2/2u2, (f, 1) C Q. (9.1)
where (see Section VIII) 1 is defined by b(H(f)) 0 ) = g.
Even without L, the size of Q2 is at least 24000, corresponding
to a binary image on a small (64 X 64) lattice. Hence, the
identification of even near-optimal solutions is extremely diffi-
cult for such a relatively complex function.
In Sections XI and XII we will describe our stochastic relaxa-

tion method for this kind of optimization. The same method
works for sampling and for computing expectations (and
hence forming likelihood ratios), as will be explained in Sec-
tion XI. The algorithm is highly parallel, but our current
implementation is serial: it uses a single processor. The resto-
ration of more complex images than those in Section XIII,
probably involving more levels in the hierarchy, may necessi-
tate some parallel processing.

X. STOCHASTIC RELAXATION

There are many types of "relaxation," two of them being
the type used in statistical physics and the type developed in
image processing called "relaxation labeling" (RL), or some-
times "probabilistic relaxation." Basically, ours is of the for-
mer class, referred to here as SR, although there are some com-
mon features with RL.
The "Metropolis algorithm" (Metropolis et al. [42]) and

others like it [7], [18] were invented to study the equilibrium
properties, especially ensemble averages, time-evolution, and
low-temperature behavior, of very large systems of essentially
identical, interacting components, such as molecules in a gas or
atoms in binary alloys.
Let Q2 denote the possible configurations of the system; for

example, co C Q might be the molecular positions or site con-
figuration. If the system is in thermal equilibrium with its
surroundings, then the probability (or "Boltzmann factor") of
co is given by

7r(c) = e-08(w) E e-$6(U), coCE2
(A

where d (X) is the potential energy of X and ,B = 1/KT where
K is Boltzmann's constant and T is absolute temperature. We
have already seen an example in the Ising model (4.7). Usually,
one needs to compute ensemble averages of the form

E Y(co)e fI(Q)
(Y)= j Y(c)d(c)=dEe-

where Y is some variable of interest. This cannot be done
analytically. In the usual Monte Carlo method, one restricts
the sums above to a sample of o's drawn uniformly from Q..
This, however, breaks down in the situation above: the expo-
nential factor puts most of the mass of 7r over a very small part
of Q2, and hence one tends to choose samples of very low prob-
ability. The idea in [42] is to choose the samples from ir in-
stead of uniformly and then weight the samples evenly instead
of by dir. In other words, one obtains co1, Co2, --* , CR from
1r and (Y) is approximated by the usual ergodic averages:

(10.1)
I R

(Y)R E1 Y(C,).)r= 1

Briefly, the sampling algorithm in [42] is as follows. Given
the state of the system at "time" t, say X(t), one randomly
chooses another configuration 7i and computes the energy
change A/ = & (7i) - & (X(t)) and the quantity

(10.2)Ir(X() =)-Aq
= e(t)

If q > 1, the move to 71 is allowed and X(t + 1) = rq, whereas if
q < 1, the transition is made with probability q. Thus we
choose 0 '< < 1 uniformly and set X(t + 1) = 71 if .< q and
X(t + 1) = X(t) if t> q. (A "parallel processing variant" of
this for simulating certain binary MRF's is given by Berger
and Bonomi [4].)
In binary, "single-flip" studies, rq = X(t) except at one site,

whereas in "spin-exchange" [18] systems, a pair of neighbor-
ing sites is selected. In either case, the "flip" or "exchange"
is made with probability q/(1 + q), where q is given in (10.2).
In special cases, the single-flip system is equivalent to our
Gibbs Sampler. The exchange algorithm in Cross and Jain
[12] is motivated by work on the evolution of binary alloys.
The samples generated are used for visual inspection and statis-
tical testing, comparing the real and simulated textures. The
model is an autobinomial MRF; see [6] or [12]. The algo-
rithm is not suitable (nor intended) for restoration: for one
thing, the intensity histogram is constant throughout the itera-
tion process. This is necessarily the case with exchange sys-
tems which depend heavily on the initial configuration.
The algorithm in Hassner and Sklansky [28] is apparently a

modification of one in Bortz et al. [7]. Another application
of these ideas outside statistical mechanics appears in Hinton
and Sejnowski [29], a paper about neural modeling but a spiri-
tual cousin of ours. In particular, the parallel nature of these
algorithms is emphasized.
The essence of every SR scheme is that changes (co-l7q)

which increase energy, i.e., lower probability, are permitted.
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By contrast, deterministic algorithms only allow jumps to states
of lower energy and invariably get "stuck" in local minima.
To get to samples from 1T, we must occasionally "backtrack."
All of these algorithms can be cast in a general theory involv-

ing Markov chains with state space Q2. See Hammersley and
Handscomb [271 for a readable treatment. The goal is an
irreducible, aperiodic chain with equilibrium measure 7r. If
WI cWI' ' XR is a realization of such a chain, then stan-
dard results yield (10.1), in fact at a rate O(R -1/2) as R -* o.
In this setup an auxiliary transition matrix is used to go from
X to q, and the general replacement recipe involves the same

ratio r(i1)/ir(cu). The Markovian properties of the Gibbs Sam-
pler will be described in the following sections.
Chemical annealing is a method for determining the low en-

ergy states of a material by a gradual lowering of temperature.
The process is delicate: if T is lowered too rapidly and insuffi-
cient time is spent at temperatures near the freezing point,
then the process may bog down in nonequilibrium states, cor-
responding to flaws in the material, etc. In simulated anneal-
ing, Kirkpatrick et al. [40] identify the solution of an optimal
(computer) design problem with the ground state of an imagi-
nary physical system, and then employ the Metropolis algo-
rithm to reach "steady-state" at each of a decreasing sequence
of teinperatures {Tn} This sequence, and the time spent at
each temperature, is called an "annealing schedule." In [40],
this is done on an ad hoc basis using guidelines developed for
c-hemical annealing. Here, we prove the existence of annealing
schedules which guarantee convergence to minimum energy
states (see Section XII for formal definitions), and we identify
the rate of decrease relative to the number of full sweeps.
Turning to RL, there are many similarities with SR, both in

purpose and, at least abstractly, in method. RL was designed
for the assignment of numeric or symbolic labels to objects in
a visual system, such as intensity levels to pixels or geometric
labels to cube edges, in order to achieve a "global interpreta-
tion" that is consistent with the context and certain "local
constraints." Ideally, the process evolves by a series of local
changes, which are intended to be simple, lhomogeneous, and
performed in parallel The local constraints are usually so-
called 'compatibility functions," which are much like statis-
tical correlations, and often defined in reference to a graph.
We refer the reader to Davis and Rosenfeld [13] for an exposi-
tory treatment, to Rosenfeld et al. [46] for the origins, to
Hummel and Zucker [30] for recent work on the logical and
mathematical foundations, and to Rosenfeld and Kak [47] for
applications to iterative segmentation.
But there are also fundamental differences. First, most vari-

ants of RL are rather ad hoc and heuristic. Second, and more
:importantly, RL is essentially a nonstochastic process, both in
the interaction model and in the updating algorithms. (Indeed,
various probabilistic analogies are often avoided as misleading;
see [30], for example.) There is nothing in RL corresponding
to an equilibrium measure or even a joint probability law over
configurations, whereas there is no analogue in SR of the all-
important, iterative updating formulas and corresponding se-
quence of "probability estimates" for various hypotheses in-
VOlving pixel or object classification.

In summary, there are shared goals and shared features (lo-

cality, parallelism, etc.) but SR and RL are quite distinct, at
least as practiced in the references made here.

XI. GIBBS SAMPLER: GENERAL DESCRIPTION

We return to the general notation of Section TV: \ {= ,

s < S} is an MRF over a graph {g, s C S} with state spaces
As, configuration space Q = Is As, and Gibbs distribution
frQ(o) = e-U(w)IT/Z X E2.
The general computational problems are

A) sample from the distribution ar;
B) minimize U over Q;
C) compute expected values.

Of course, we are most concerned with B), which corre-
sponds to MAP estimation when ir is the posterior distribution.
The most basic problem is A), however, because A) together
with annealing yields B) and A) together with the ergodic
theorem yields C). We will state three theorems corresponding
to A), B), and C) above. Theorem C is not used here and will
be proven elsewhere; we state it because of its potential im-
portance to other methods of restoration and to hypothesis
testing.
Let us imagine a simple processor placed at each site s of the

graph. The connectivity relation among the processors is de-
termined by the bonds: the processor at s is connected to each
processor for the sites in gs. In the cases of interest here (and
elsewhere) the number of sites N is very large. However, the
size of the neighborhoods, and thus the number of connec-
tions to a given processor, is modest, only eight in our experi-
ments, including line, pixel and mixed bonds.
The state of the machine evolves by discrete changes and it

is therefore convenient to discretize time, say t - 1, 2, 3, -- .

At time t, the state of the processor at site s is a random vari-
able Xs(t) with values in A,. The total configuration is X(t) a

(XSI (t), XS2 (t), * , XsN(t)), which evolves due to state
changes of the individual processors. The starting configura-
tion, X(0), is arbitrary. At each epoch, only one site under-
goes a (possible) change, so that X(t - 1) and X(t) can differ in
at most one coordinate. Let ni, n2, . be the sequence in
which the sites are "visited"' for replacement; thus, nt F S and
Xsi(t) -Xsi(t - 1), i ' nt. Each processor is programmed to
follow the same algorithm: at time t, a sample is drawn from
the local characteristics of in for s = nt and co = X(t - 1). In
other words, we choose a state x F Ant from the conditional
distribution of Xnt given the observed states of the neighbor-
ing sites Xr (t - 1), r F nt. The new configuration X(t) has

Xn,(t) = x and Xs(t) = Xs(t - 1), s # nt.
These are local computations, and identical in nature when X

is homogeneous. Moreover, the actual calculation is trivial
since the local characteristics are generally very simple. These
conditional probabilities were discussed in Section IV and we
refer the reader again to formulas (4.8) and (4.9). Notice that
Z does not appear.
Given an initial configuration X(0), we thus obtain a se-

quence X(1), X(2), X(3), * of configurations whose conver-
gence properties will be described in Section XII. The limits
obtained do not depend on X(0). The sequence (nt) we ac-
tually use is simply the one corresponding to a raster scan, i.e.,
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repeatedly visiting all the sites in some "natural" fixed
Of course, in this case one does not actually need a pr
at each site. But the theorems are valid for very gene]
necessarily periodic) sequences (nt) allowing for asych
schemes in which each processor could be driven by,
clock. Let us briefly discuss such a parallel implementa
the Gibbs Sampler and its advantage over the serial versi
Computation is parallel in the sense that it is realized

ple and alike units operating largely independently. U
dependent only to the extent that each must transmit
rent state to its neighbors. Most importantly, the am
time required for one complete update of the entire sN
independent of the number of sites. In the raster vers
simply "move" a processor from site to site. Upon arr
a site, this processor must first load the local neighb
relations and state values, perform the replacement, ani
on. The time required to refresh S grows linearly with P
Thus, for example, for the purposes at hand, the paral
cedure is potentially at least 104 times faster than th4
version we used, and which required considerable CPU t
a VAX 780. Of course, we recognize that the fully
version will require extremely sophisticated new hal
although we understand that small prototypes of simi
chines are underway at several places.
A more modest degree of parallelism can be simply

mented. Since the convergence theorems are indepen
the details of the site replacement scheme nl, n2,
graph associated with the MRF X can be divided into
tions of sites with each collection assigned to an indepei
running (asynchronous) processor. Each such processoi
execute a raster scan updating of its assigned sites. Coi
cation requirements will be small if the division of th
respects the natural topology of the scene, provided, of
that the neighborhood systems are reasonably local. S
implementation, with five or ten micro- or minicompute
resents a straightforward application of available techno

XII. GIBBS SAMPLER: MATHEMATICAL FOUNDATI

As in Section XI, (nt), t = 1, 2, *.* ,is the sequence ir
the sites are visited for updating, and X,(t) denotes ti
of site s after t replacement opportunities, of which onl
for which n, = s, 1 < r < t, involve site s. For simplic
will assume a common state space As A = {0, 1, - *,
and as usual that 0 < 7r(co) < 1 for all co E Q or, wha
same, that sup., U(.o)! < oo. The initial configuration i
We now investigate the statistical properties of the r

process {X(t), t = 0, 1, 2, . - - }. The evolution X(t - 1)
of the system was explained in Section XI. In mathe.
terms,

P(Xs(t) = Xss ES)
= 1(Xnt = XntjXs = xs, s :7nt)P(Xs(t- 1)
= xS, s f nt)

assumption is that we continue to visit every site, obviously a
necessary condition for convergence.
Theorem A (Relaxation): Assume that for each s E S, the se-

quence {ft, t > 1 } contains s infinitely often. Then for every
starting configuration rCE 2 and every co E Q,

lim P(X(t) = coIX(O) = 71) = rr(o).
t o

(12.2)

The proof appears in the Appendix, along with that of Theo-
rem B. Like the Metropolis algorithm, the Gibbs Sampler pro-
duces a Markov chain {X(t), t = 0, 1, 2, . . . I with 7T as equilib-
rium distribution. The only complication is that the transition
probabilities associated with the Gibbs Sampler are nonstation-
ary, and their matrix representations do not commute. This
precludes the usual algebraic treatment. These issues are dis-
cussed in more detail at the beginning of the Appendix.
We now turn to annealing. Hitherto the temperature has

been fixed. Theorem B is an "annealing schedule" or rate of
temperature decrease which forces the system into the lowest
energy states. The necessary programming modification in the
relaxation process is trivial, and the local nature of the calcula-
tions is preserved.
Let us indicate the dependence of ir on T by writing 7rT, and

let T(t) denote the temperature at stage t. The annealing pro-
cedure generates a different process {X(t), t = 1, 2, * * * } such
that

P(Xs(t) = x, s GES)
= 7rT(t)(Xnt = Xnt|Xs = xs, s = nt)

(12.3)

Let

Q0 {= E Q2: U(c) = min U(71)}, (12.4)

and let ir0 be the uniform distribution on f20. Finally, define

U* = max U(co),

U* = min U(co),
Co

A=U*- U*. (12.5)

Theorem B (Annealing): Assume that there exists an integer
r >N such that for every t = 0, 1, 2, - - - we have

SC {nt+1,nt+2, ,,nt+,rl-
Let T(t) be any decreasing sequence of temperatures for which

a) T(t)-0 as t -*0;
b) T(t) > NA/log t

for all t > to for some integer to > 2.

Then for any starting configuration 7r E& Q and for every
cu E E2,

(12.1) lim P(X(t) = ljx(0) = 71) = 7ro(cL)) (12.6)

where, of course, tr= eUlTIZ is the Gibbs measure which
drives the process. Our first result states that the distribution
of X(t) converges to 7r as t -* oo regardless of X(0). The only

The first condition is that the individual "clocks" do not
slow to an arbitrarily low frequency as the system evolves, and
imposes no limitations in practice. For raster replacement,
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== N. The major practical weakness is b); we cannot truly fol-
low the "schedule" NA/log t. For example, with N = 20,000
and A = 1, it would take e401000 site visits to reach T- 0.5.
We single out this temperature because we have obtained good
results by making T decrease from approximately T = 4 to T =
0.5 over 300-1000 sweeps (= 300N- 1OON replacements),
using a schedule of the form Cllog (1 + k), where k is the num-
ber of full sweeps. (Notice that the condition in b) is then sat-
isfied provided C is sufficiently large.) Apparently, the bound
in b) is far from optimal, at least as concerns the constant NA.
(In fact, the proof of Theorem B does establish something
stronger, namely that A can be taken as the largest absolute
difference in energies associated with pairs w and w* which
differ at only one coordinate. But this improvement still
leaves NA too large for actual practice.) On the other hand,
the logarithmic rate is not too surprising in view of the wide-
spread experience of chemists that T must be lowered very
slowly, particularly near the freezing point. Otherwise one en-
counters undesirable physical embodiments of local energy
minima.
Concerning ergodicity, in statistical physics one attempts to

predict the observable quantities of a system in equilibrium;
these are the "time averages" of functions on Q2. Under the
"ergodic hypothesis," one assuumes that (10.1) is in force, so
that time averages approach the corresponding "phase aver-
ages" or expected values. The analog for our system is the
assertion that, in some suitable sense,

I n
lim - L Y(X(t))= Y(o)drr(c).
--oO n

(12.7)

(Here again T is fixed.) As we have already stated, a direct cal-
culation of the righthand side of (12.7), namely,

Y(WC)eU(W)/T eU(w)/T

is impossible in general. The left-hand side of (12.7) suggests
that we use the Gibbs Sampler and compute a time average of
the function Y. For most physical systems, the ergodic hy-
pothesis is just that-a hypothesis-which can rarely be verified
in practice. Fortunately, for our system it is not too difficult
to directly establish ergodicity.
Theorem C (Ergodicity): Assume that there exists a r such

that S C {fnt +, * , nt } for all t. Then for every function
Y on 2 and for every starting configuration q CQ, (12.7)
holds with probability one.

XIII. EXPERIMENTAL RESULTS
There are three groups of pictures. Each contains an original

image, several degraded versions, and the corresponding resto-
rations, usually at two stages of the annealing process to illus-
trate its evolution. The degradations are formed from com-

binations of

i) 0 absent or 0(x)= -;
ii) multiplicative or additive noise;
iii) signal-to-noise levels.

The signal-to-noise ratios are all very low. For blurring, we
always took the convolution H in (2.3). The restorations are

all MAP estimates generated by the serial Gibbs Sampler with
annealing schedule

C
(log ( + k) '

where T(k) is the temperature during the kth iteration (= full
sweep of S), so that K is the total number of iterations. In
each case, C = 3.0 or C = 4.0. No pre- or postfiltering, nor
anything else was done. The models for the intensity and line
processes were kept as simple as possible; indeed, only cliques
of size two appear in the intensity model.
Group 1: The original image [Fig. 2(a)] is a sample of an

MRF on Z128 with L = 5 intensities and the eight-neighbor sys-
tem (Fig. 1, c = 2). The potentials Vc = 0 unless C = {r, s}, in
which case

V,3 fs =fr
Vc(f){=

1, fs fr-

Two hundred iterations (at T= 1) were made to generate
Fig. 2(a).
The first degraded version is Fig. 2(b), which is simply Fig.

2(a) plus Gaussian noise with a = 1.5 relative to gray levels f,
1 <f< 5. Fig. 2(c) is the restoration of Fig. 2(b) with K = 25
iterations only, i.e., early in the annealing process. In Fig.
2(d), K = 300.
The second degraded image [Fig. 3(b)] uses the model

i-=H(F)1/2 .S(31

where , = 1 and a = 0.1, again relative to intensities 1 <f< 5.
Fig. 3(c) and 3(d) shows the restorations of Fig. 3(b) with K
25 and K = 300, respectively.
Group 2: Fig. 4(a) is "hand-drawn." The lattice size is 64 X

64 and there are three gray levels. Gaussian noise (p = 0, a =
0.7) was added to produce Fig. 4(b). We tried two types of
restoration on Fig. 4(b). First, we used the "blob process"
which generated Fig. 2(a) for the F -model. There was no line
process and K = 1000. Obviously these are flaws; see Fig. 4(c).
A line process L was then adjoined to F for the original

image model, and the corresponding restoration after 1000
iterations is shown in Fig. 4(d). L itself was described in Case
2 of Section III and the neighborhood system for (F, L) on
Z64 U D64 was discussed in Case 3 of Section 1II. The (prior)
distribution on \ = (F, L) was as follows. The range of F is
{0, 1, 2} (L = 3 intensities). The energy U(f, 1) consists of
two terms, say U(fIl) + U(l). To understand the interaction
term U(fI 1), let d denote a line site, say between pixels r and
s. If Ld = 1, i.e., an edge element is "present" at d, then the
bond between s and r is "broken" and we set V{r, s}(fr' fs) =
0 regardless of f, fs; otherwise (Ld = 0) V{r, s} is as before ex-
cept that + X are replaced by +1. As for U(l), only cliques of
size four are nonzero, of which there are six distinct types up
to rotations. These are shown in Fig. 5(a) with their asso-
ciated energy values.
Then we corrupted the hand-drawn figure using (13.1) with

the same noise parameters as Fig. 3(b), obtaining Fig. 6(b),
which is restored in Fig. 6(c) using the same prior on (1', L)
as above and with K = 1000 iterations.

732
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(a)

(b)

(c)

(d)
Fig. 2. (a) Original image: Sample from MRF. (b) Degraded image: Additive noise. (c) Restoration: 25 iterations. (d)

Restoration: 300 iterations.

Group 3: The results in Group 2 suggest a boundary-finding
algorithm for general shapes: allow the line process more
directional freedom. Group 3 is an exercise in boundary find-
ing at essentially 0 dB. Fig. 7(a) is a 64 X 64 segment of a
roadside photograph that we obtained from the Visions Re-
search Group at the University of Massachusetts. The levels
are scaled so that the (existing) two peaks in the histogram
occur at f= 0 and f= 1. We regard Fig. 7(a) as the blurred
image H( F). Noise is added in Fig. 7(b); the standard error is
a = 0.5 relative to the two main gray levelsf= 0, 1.
Figs. 7(c) and 7(d) are "restorations" of Fig. 7(b) for K =

100 and K = 1000 iterations, respectively. The outcome of
the line process is indicated by painting black any pixels to the
left of or above a "broken bond." The two main regions, com-
prising the sign and the arrow, are perfectly circumscribed by a
continuous sequence of line elements.
The model for vX is more complex than the one in Group 2.

There are now four possible states for each line site corre-
sponding to "off" (I = 0) and three directions, shown in Fig.
5(b). The U(f 11) term is the same as before in that the pixel
bond between r and s is broken whenever Id * 0. The range of
F is{0,1}(L=2).

Only cliques of size four are nonzero in U(I), as before.
However, there are now many combinations for (ldl, d2 I ,
Id4) given such a clique C {d,, d2, d3, d4 } of line sites, al-
though the number is substantially reduced by assuming rota-
tional invariance, which we do. Fig. 5(c) shows the conven-
tion we will use for the ordering and an example of the nota-
tion. The energies for the possible configurations (Idi, 1 6 i6
4) range from 0 to 2.70. (Remember that high energies cor-
respond to low probability, and that the exponential exagger-
ates differences.) We took V(0, 0, 0, 0) = 0 and V(ldi, I 6 i 6
4) = 2.70 otherwise, except when exactly two of the Id, are
nonzero. Parallel segments [e.g., (1, 0, 1, 0)] receive energy
2.70; sharp turns [e.g., (0, 2, 1, 0)] and other "corner" types
get 1.80; mild turns [e.g., (0, 2, 3, 0)] are 1.35; and continua-
tions [e.g., (2, 0, 2, 0) or (0, 1, 3, 0)] are 0.90.

XIV. CONCLUDING REMARKS

We have introduced some new theoretical and processing
methods for image restoration. The models and estimates are
noncausal and nonlinear, and do not represent extensions into
two dimensions of one-dimensional filtering and smoothing
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(a) (C)

(b) (d)

Fig. 3. (a) Original image: Sample from MRF. (b) Degraded image: Blur, nonlinear transformation, multiplicative noise.
(c) Restoration: 25 iterations. (d) Restoration: 300 iterations.

algorithms. Rather, our work is largely inspired by the meth-
ods of statistical physics for investigating the time-evolution
and equilibrium behavior of large, lattice-based systems.
There are, of course, many well-known and remarkable fea-

tures of these massive, homogeneous physical systems. Among
these is the evolution to minimal energy states, regardless of
initial conditions. In our work posterior (Gibbs) distribution
represents an imaginary physical system whose lowest energy

states are exactly the MAP estimates of the original image
given the degraded "data."
The approach is very flexible. The MRF-Gibbs class of

models is tailor-made for representing the dependencies among
the intensity levels of nearby pixels as well as for augmenting
the usual, pixel-based process by other, unobservable attribute
processes, such as our "line process," in order to bring exoge-

nous information into the model. Moreover, the degradation
model is almost unrestricted; in particular, we allow for defor-
mations due to the image formation and recording processes.

All that is required is that the posterior distribution have a

"reasonable" neighborhood structure as a MRF, for in that
case the computational load can be accommodated by appro-

priate variants (such as the Gibbs Sampler) of relaxation algo-
rithms for dynamical systems.

APPENDIX
PROOFS OF THEOREMS

Background and Notation
Recall that A= {0, 1,2,--- ,L - I is the common state

space, that ij, 77', c, etc. denote elements of the configuration
space Q2= e, and that the sites S-{s= , s2, * * *, sN} are vis-
ited for updating in the order {n I, n2, * * } C S. The result-
ing stochastic process is {X(t), t = 0, 1, 2, - * * 1, where X(0) is
the initial configuration.
For Theorem A, the transitions are governed by the Gibbs

distribution ir(co) = e U(,)ITIZ in accordance with (12.1),
whereas, for Theorem B (annealing), we use 7rT(t) (see Section
XII) for the transition X(t - 1) - X(t) [see (12.3)].
Let us briefly discuss the process {X(t), t> 0}, restricting

attention to constant temperature; the annealing case is essen-
tially the same. To begin with, {X(t), t > O} is indeed a Mar-
kov chain; this is apparent from its construction. Fix t and
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(a) (c)

(b) (d)

Fig. 4. (a) Original imnage: "Hand-drawn." (b) Degraded image: Additive noise. (c) Restoration: Without line process;
1000 iterations. (d) Restoration: Including line process; 1000 iterations.
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(a)

(c)

Fig. 6. (a) Original image: "Hand-drawn." (b) Degraded image: Blur,
nonlnear transformation, multiplicative noise. (c) Restoration: in-
cluding line process; 1000 iterations.

X E Q2. For any x E A, let xx denote the configuration which
is x at site nt and agrees with X elsewhere. The transition ma-
trix at time t is

7T(Xnt = Xnt X, = x3, s ¢ nt)

(Md).q, w = if 71 = coX for some x EA

O, otherwise

where (Mt),,,,,, denotes the row 7, column X entry ofMt, and
C= (XSI, XS2, * *, XsN). In particular, the chain is nonstation-
ary, although clearly aperiodic and irreducible (since 7r(co) >
0 V X). Moreover, given any starting vector (distribution) ,uO,
the distribution of X(t) is given by the vector ,uo nt= l M1, i.e.,

t
miPi,((t =WO ) = oxX fM

=EP(X) = IX(o) = Uto(n).

Notice that ir is the (necessarily) unique invariant vector, i.e.,
for every t = 1, 2, * *,

ir(W) = (7rMt). = E P(X(t) = WI X(O) = 71) w(n).
12

(A.l)

To see this, fix t and co = {x,}, and write

OrMt).,, = E ir(n)(Md)1, .

-1

xEA*0)MtW,

= (Mt)z'X"ÎEA) (for any x' EA)

=7r(Xnl=Xnt= Xs=X,, S*nt) ir(X, =x, s *lnt)

= ir(Co).

It will be convenient to use the following, semistandard no-

tation for transitions. For nonnegative integers r< t and
co, E 2, set

P(t, coIr, 7) = P(X(t) = coIX(r) = r)

(b)
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(a)

(b) (d)

Fig. 7. (a) Blurred image (roadside scene). (b) Degraded image: Addi-
tive noise. (c) Restoration including line process; 100 iterations. (d)
Restoration including line process; 1000 iterations.

and, for any distribution p on Q2, set

P(t, I r, ,u)=E P(t, coI r, ) u(72).

Finally, ||,u - v denotes the L'1 distance between two distri-
butions on Q2:

II1 - vll =E 1p(C@) - v(CO)I.

Obviously, u,, -+,(n cc) in distribution (i.e., ,un(C) - J(w)
Vco) if and only if iII1 ,IIU *0, n cc. (Remember that Q2
is finite.)

Proof of Theorem A: Set To = 0 and define T1 < T2 < -.

such that

SC{nTk l+,nTk-l+22, ,nTk}, k= 1,2,

This is possible since every site is visited infinitely often.
Clearly (at least) k iterations or full sweeps have been com-

pleted by "time" Tk. In particular, kN< Tk < - V k. Let

K(t) = sup {k: Tk < t}.

Obviously K(t) - - at t - -. The proof of Theorem A is

based on the following lemma, which also figures in the proof
of the annealing theorem.
Lemma 1: There exists a constant r, 0 < r < 1, such that for

every t = I, 2, - *,

SUp |PX(t) = cWX(0) = ') - PX(t)

=OIX(°) '")I < rK(t)

Assume for now that the lemma is true. Since nr is an in-
variant vector for the chain:

lim sup |P(X(t)

=CUIx(o) =n ()

= lim sup | ir(r'){P(X(t)
=W

= XIx(o) = 71) - P(Xt) = w IxP = nT)}

(c)
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[by (A.1)]
< rim sup |P( = ,,IX(O) = ')

- P(X(t) = WI X(O) = W")
O, by Lemma 1.

So it suffices to prove Lemma 1.
Proof of Lemma 1. For each k = 1, 2, * and 1< i < N,

let mi be the time of the last replacement of site si before Tk +
1,<i.e.,

mi = sup {t: t Tk,nt =Si}-

We can assume, without loss of generality, that mI >m2 >
*-*> mN; otherwise, relabel the sites. For any co = (xs1,**,
xSN) and co',

P(X(Tk)>=WX(Tk -) w')

Ax, (IT, )= Xs,--,XsN(MN)
= XsN IX(Tk-l) co )

N

= P(Xs.(mi) xs. XSi +r(mi+I)

Xsj + 1 ,XsN(mN) = Xs,, X(Tk - 1) )-

Let 6 be the smallest probability among the local characteristics:

6= inf
(XS,, , xSN) E n

I < i <N

7F(Xs, = xjsilXs. = XSj, j i).

Then 0 <6 < 1 and a little reflection shows that every term in

the product above is at least 6. Hence,

inf P(X(Tk) = CIX(Tk_1) = o))
k=1, 2,-"

Li4, W

(A.2)

Consider now the inequality asserted in Lemma 1. It is triv-

ial for t < T, since in this case K(t) = 0. For t > T,

sup P(X(t) = IX(0)=q') P(X(t)=- IX(O)=')
WII(.4, 17n

= sup {sup P(X(t) = wIX(0) = 71)

- inf P(X(t) = co X(o) = 77)}

= sup SUp P(X(t) = X(Tj)

= c')P(X(T1) = ,'IX(O)=

inf P(X(t) =cIX(T,)
= c') P(X(T1) Co'|X(O) =

Certainly, for each c C Q,

sup E P(X(t) = oj X(TI ) @ P(X(TI )c- '| X(O) = 77)

< sup E P(X(t) = coIX(TI ) o) p(c )psup l

where the supremum is over all probability measures p on Q
which, by (A.2), are subject to p(Co')> N V Co'. Suppose
co) --P(X(t) = coI X(TI) = ') is maximized at W' - c* (which
depends on w). Then the last supremum is attained by plac-
ing mass 6N on each co' and the remaining mass, namely, 1 -

I N = 1 -LN6N, on co*. The value so obtained is

(I1 (LN 1) 5N)P(X(t)
= WJX(T1) = w*)
+ 5N P(X(t) coIX(T1 co).=@

Similarly,

infL P(X(t) =c X(TI)=co')P(X(TI)=co' X(O)=1)
77 WI

> (I_ (LN 1) N) P(X(t)

- IX(TI) =*)
+6N S P(X(t) = wlX(T1) =co*)

where co'- P(X(t)= oIX(TI wJ) is minimized at cu*. It
follows immediately that

Q(t, co) < (1 - LN6N) {P(X(t)
= co!X(Tl) = c*)- P(X(t)c=oX(Tl)c= *)},

and hence,

SUp IP(X(t) = cIoX(0) = 7i') - P(X(t) = coIX(o) = '')

< (1 - L 6N) sup |P(X(t)
I ,,

(4, 17, 17

= co|X(To) = 7 ) - P(X(t)
CO IX(TI )=,q) 1.

Proceeding in this way, we obtain the bound

(1 - LN6N)K(t) SUp |P(X(t)

= X(TK(t)) = r1') - P(X(t) = X(TK(t)) 11)I
and the lemma now follows with r= - LN&N . Notice that
r = 0 corresponds to the (degenerate) case in which 6 = L1,
i.e., all the local characteristics are uniform on A. Q.E.D.

Proofof Theorem B: We first state two lemmas.
Lemma 2: For every to = 0, 1, 2, * * ,

lim sup P(X(t)
t-*o00 1'

IM

t w, 1, 17

= wIX(to) = 7') - P(X(t) = wIjX(to) = r")I = 0-

738

= sup Q(t, co).
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Lemma 3:

lim sup IIP(t, Jto, ro)- 7roj=O.
to0-o t) to

Recall that rr0 is the uniform probability measure over the
minimal energy states Q20 = {co: U(co) = min, U(t1)}.

First we show how these lemmas imply Theorem B, which
states that P(X(t) = X(O) = 7) converges to 7r0 as t oo. For
any7GEfl,

lim ||P(X(t) X(O) =7) - iro|
t 00

= him lim 12P(t,. to,1')
to ° tt+ 00

t> to

*P(to, n'O, )-0 roJ'

< lim limin P(t,- Ito,7t)
to-+00 t-*00 7I

t) to

*P(to,r' 0,O,)-P(t,I to,rro)JJ

+ lim lim ||P(t, - Ito 7)IO)- .Toll
to +00 to+00

t> to

The last term is zero by Lemma 3. Furthermore, since P(to,-
Jo, 7) and 70 have total mass 1, we have

P(t,* I to,71iP(to ,77' 0,q)-P(t to,ITO1O)l

= Z SUP 1 (P(t, CO to, ')-P(t, fI to, "1))
C077 71

X (P(to, n'l °, 71)-ro(1)

<2 E sup JP(t,&l to,n7)-P(t,&4to,71")J.
w n, n.,

Finally, then,

lim ||P(X(t) = X(O) = 77)- rTo
t-00

<2Z lim lim sup JP(tcj)Ito17?')
to t.°t

I

t> to

- P(t, coI to, q7)l
=0 by Lemma 2. Q.E.D.

Proof of Lemma 2: We follow the proof of Lemma 1. Fix
to = 0, 1,-" and define Tk = to + k-r, k = 0, 1, 2,-- -. Re-
call that SC {nt+t,... ,nt+} for all t by hypothesis, that
lrT(t)(W)= eU(w))/T(t)IZ and that U*, U* are the maximum
and minimum of U(c), respectively, the range being A = U* -

U*. Let

inf
1 < iSN

(Xsl-. ..XSN ) E

1TT(t)(Xsi = Xsi xs; = XSj, j i).

Observe that

e-U*/T(t) I)Tt
6() L-U(t) t = e I()

Now fix k for the moment and define the mi as before:

mi=sup {t: t. Tk,nt =si}, 1 <iS<N.

We again assume that m1 > m2 > ... > mN. Then

P(X(Tk) = c I X(Tk - 1)=co')
= P(X,, (m 1 ) = X.-, ,XsN$(mN)
=XSNIX(Tk-l) = )

N
= fl P(XS.(mj)= xsJIXsj+ 1 (mj+)
j=1

=Xsy XsN(MN) = XsN, X(Tk - 1 )= )

N
> H (m1) (using (12.3) and the definition of l)
j=1

N
> L -N nl CAIT(mi)

j=l

T(to + kr)
(since mi < Tk

= to + kr, j = 1, 2, - *-, N, and T( - ) is decreasing)

LN(to +kr)'
wherever to + kr is sufficiently large. In fact, for a sufficiently
small constant C, we can and do assume that

inf P(X(Tk)=W|X(Tk-l)= >)> CL-Nin,W' J~~k1 to + kr (A.3)

for every to = 0, 1, 2, - * * and k = 1, 2,*, bearing in mind
that Tk depends on to.
For each t > to, define K(t) = sup {k: Tk < t} so that K(t) -

oo as t - oo. Fix t > T1 and continue to follow the argument
in Lemma 1, but using (A.3) in place of (A.2), obtaining

sup P(X(t) = coX(to) - P(X(t) = JX(to) =7)
CO, 7, r1
WI~~~ 'h'(i

K(t) t Ct

Hence it will be sufficient to show that

(A.4)

for every to. However, (A.4) is a well-known consequence of
the divergence of the series 2k (to + kr)-' for all to, -r. This
completes the proof of Lemma 2.

ProofofLemma 3: The probability measures P(t, to, nro)
figure prominently in the proof, and for notational ease we
prefer to write Pto t( s), So that for any t > to > 0 we have

Pto, t(c) = E P(X(t) = co X(to) =17) iro(74).

To begin with, we claim that for any t > to > 0,

| |Pto, t - 7T(t)|| < | Pto, t.1 - 1TT(t)||- (A.5)
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Assume for convenience that nt = si. Then

|Pto, t T(tM
-Z 17TT(t)(Xsl= XS1 Xs= X s S1)
(XS, * XSN)
*Pto , t - I (Xs = XS,s * sS1)

-TT(t)(Xs =Xs,S SE s)

2: | :E T(t)(Xsl =Xsllxs=xs,s*sl)
XS2,9..,XSN XSl A

7TT(to tl(Xs = Xs, S=A S1 )
- T(t)(x=Xss S#1) sI

- tZ Pto , t-(X5x5=sXs it)
XS ... XS

1TT(t)(Xs = Xs, S * SI)

= E I E {Pto't-I(xs=xS'sES)
XS2 -*XSN xs1

7rT(t)(Xs = XS, S c S)l

< L
(Xslt* *X =xSN) C-EQ

-'7rT(t)(Xs = xs, S E

IPt,, t - 1 (Xs = x s E S)

Lemma 3 can now be obtained from (A.5)
following way. Fix t > to >0:

I PPtot+Troll
S oI tO,t- 7T(t)I + 117T(t) iTohI

- 1tT, t - I1 T(t) 70 To1,
< I1Pto,t-1 - 7T(t-l)|l + 117T(t-l)

- 71T(t)11 + 11|7T(t) - N1o1
< |Pto, t-2 7T(t- ) + 7rT(t- I

7rT(t)I I+ I||aT ) TO I
< 1lPto,t-2 - 7rT(t-)2) + IrT(t-2)

7TT(t -i)11 + j7|1T(t -) 7TT(t)|
+ Il7lT(t)-T11o.

and (A.7) in the

by (A.5)

Proceeding in this way,

t-1

IIPto,t- 7To11I IPto,to 7TT(to)II + E|iITT(k)
k= to

- 7TT(k+ O)II + |I|?T(t) - 'No011
Since Pto, to = iTo and || 7T(t) - iroI -+ O as t-+ oo, we have,

lim sup llPto,t - gToll
to-* t to

= l!Pto,t-i - 7TT(t)ll.
Observe that ?Io - 7rT(t)l -*0 as t-* oo. To see this, let
oIO be the size of QO. Then

e-U(iJ )/T(t)
=T(t)(W)+= :T=E e-U(w)/T(t) +

e -U(T')(T(t)
w' EQ-o Lj'E=- M o

e -(U(w) U*)/T(t)

12ol+
0,

t °°0
> I

Next, we claim that

(u)C QO .

00

7IrT(t) - rT(t+ 1) < -(A.7)

Since

00 co

£ 11 rT(t) ITT(t + 1 ZE |7T(t)(CO) 7rT(t + 1)(CU)|
t=1 X t=1

and since 7rT(t)(CO) _* iro (C) for every co, it will be enough to

show that, for every co, 7TTCO) is monotone (increasing or de-

creasing) in T for all T sufficiently small. But this is clear from

(A.6): if co 1 Q20, then a little calculus shows that 7rT(W) iS
strictly increasing for Te (0, e) for some c, whereas if CUG

Q2O, then 7TT(CO) is strictly decreasing for all T> 0.

t - I

< lim sup £ I |11T(k) iTT(k + 1) I Ito°°+ t>to k=to

= lim Z 1|7TT(k)- IT(k+1)1J
to-°O k=to

= 0 due to (A.7). Q.E.D.
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