CS 787: Assignment 2, Linear Systems and Feature Detection Due: 3:30pm, Mon. Feb. 26, 2007.

1. Fourier analysis and wavelets [5 marks]

"Gabor filters" are created by multiplying a sinusoidal grating times a Gaussian window:

$$
\operatorname{Gabor}(\mathbf{x} ; \mathbf{k}, \sigma)=e^{i \mathbf{k} \cdot \mathbf{x}} e^{-\left(x^{2}+y^{2}\right) /\left(2 \sigma^{2}\right)}
$$

where $\mathbf{x}=[x, y]^{T}$ is the pixel $((0,0)$ at the center of the filter $), \mathbf{k}=\left[k_{x}, k_{y}\right]^{T}$ is the spatial frequency and orientation of the filter (in cycles/pixel), and σ is the filter standard deviation (in pixels).

The complex output of the filter is typically divided into the real and imaginary components, called the sine gabor and cosine gabor, respectively.

$$
\begin{aligned}
& \Re\left[\operatorname{Gabor}(\mathbf{x} ; \mathbf{k}, \sigma]=\cos (\mathbf{k} \cdot \mathbf{x}) e^{-\left(x^{2}+y^{2}\right) /\left(2 \sigma^{2}\right)}\right. \\
& \Im\left[\operatorname{Gabor}(\mathbf{x} ; \mathbf{k}, \sigma]=\sin (\mathbf{k} \cdot \mathbf{x}) e^{-\left(x^{2}+y^{2}\right) /\left(2 \sigma^{2}\right)}\right.
\end{aligned}
$$

(a) Modulation theorem [3 marks]

The modulation theorem states that if $f(t)$ has Fourier transform $F(f)$, then $f(t) \cos 2 \pi f_{0} t$ has Fourier transform $\frac{1}{2} F\left(f-f_{0}\right)+\frac{1}{2} F\left(f+f_{0}\right)$.

Prove this theorem. (Hint: use the relation $\cos a x=\frac{e^{i a x}+e^{-i a x}}{2}$).
One application of the modulation theorem is to show that if $f(t)=e^{-\pi t^{2}} \cos 2 \pi f_{0} t$ then its Fourier transform is $F(f)=\frac{1}{2}\left[e^{-\pi\left(f-f_{0}\right)^{2}}+e^{-\pi\left(f+f_{0}\right)^{2}}\right]$ ie., the power spectrum of a Gabor filter has a Gaussian distribution.

(b) Space-frequency localization of "Gabor" filters [2 marks]

Consider the 2D Fourier transform:

$$
\begin{aligned}
F(u, v) & =\int_{\infty}^{\infty} \int_{\infty}^{\infty} f(x, y) e^{-j 2 \pi(u x+v y)} d x d y \\
f(x, y) & =\int_{\infty}^{\infty} \int_{\infty}^{\infty} F(u, v) e^{j 2 \pi(u x+v y)} d u d v
\end{aligned}
$$

where $f(x, y)$ is the image and $F(u, v)$ is its spectrum.
The Similarity theorem shows that $f(a x, b y)$ has Fourier transform $\frac{1}{|a b|} F\left(\frac{u}{a}, \frac{v}{b}\right)$. In words: if we compress a function in the spatial domain, we expand it in the frequency domain.

The similarity theorem can be generalized to show that $f(x \cos \theta+y \sin \theta,-x \sin \theta+y \cos \theta)$ has Fourier transform $F(u \cos \theta+v \sin \theta,-u \sin \theta+v \cos \theta)$. Ie., rotating the function in the spatial domain will rotate the function by the same amount in the frequency domain.

Use the demonstration program gabor-demo.m to show both of these effects. (Hand in printouts from your experiments.)

Note: To do this problem you need to download the CS787 code, decompress it into the cs787/ directory, and start matlab from the cs787/matlab/ directory. You are welcome to experiment with the other code, to learn about linear systems, filtering, and image pyramids.

2. Linear Systems and Edge Detection [8 marks]

Here you will implement the edge strength detector described in Trucco and Verri, Sec. 4.2.2.
The edge strength at pixel (i, j) is computed as

$$
s(i, j)=\|\nabla(G \otimes I)\|
$$

where $\nabla f \equiv[\partial f / \partial x, \partial f / \partial y]^{T}$ is the derivative operator, $I(x, y)$ is the image, and G is a Gaussian kernel

$$
G(x, y ; \sigma)=\frac{1}{2 \pi \sigma} \exp \left(-\frac{1}{2 \sigma^{2}}\left(x^{2}+y^{2}\right)\right)
$$

Due to the associativity of linear operations (differentiation and convolution), we can rewrite the above as:

$$
\nabla(G \otimes I)=(\nabla G) \otimes I
$$

where ∇G is the derivative of the Gaussian kernel.
Note that $\nabla G=\left[\frac{\partial G}{\partial x}, \frac{\partial G}{\partial y}\right]^{T}$ denotes two filter kernels, one for each derivative. Let's denote these kernels, $G_{x}(x, y)$ and $G_{y}(x, y)$ to represent differentiation by x and y respectively.

(a) Calculating the filter masks [2 marks]

Plot the (2D) filters $G_{x}(x, y)$ and $G_{y}(x, y)$ for $\sigma=2$ and for $-10 \leq x \leq 10,-10 \leq y \leq 10$. You can use a mesh, contour, or a greyscale plot to display your filters. Note: Use the
following five point, central difference operator to compute the derivatives:

$$
f_{i}^{\prime}=\frac{-f_{i+2}+8 f_{i+1}-8 f_{i-1}+f_{i-2}}{12 h}+O\left(h^{4}\right)
$$

where $h=1$.

(b) Computing edge strength $s(i, j)$ [4 marks]

Compute the edge strength $s(i, j)$ for the image einstein.tif. You may use the conv2 command in Matlab for 2D convolution with $G_{x}(x, y)$ and $G_{y}(x, y)$.
(c) Linear filtering operations [2 marks]

Explain the advantage (if any) of computing $(\nabla G) \otimes I$ vs. $\nabla(G \otimes I)$.

(d) Separable filters [2 bonus marks]

The operation in (b) can be achieved by successive application of two 1D filters. Write (but don't program) an expression for these convolutions.

3. Corner Detection [10 marks]

As described in Trucco and Verri, Sec. 4.3, we can detect corners by looking at the following matrix:

$$
C=\left[\begin{array}{cc}
\sum E_{x}^{2} & \sum E_{x} E_{y} \\
\sum E_{x} E_{y} & \sum E_{y}^{2}
\end{array}\right]
$$

where E_{x} is the image derivative in the x direction, E_{y} is the derivative in the y direction, and the summation is taken over some small neighborhood, $-N / 2 \ldots N / 2$. Here we will use a 7-by-7 patch.

For a symmetric matrix, C, we can write $C=V \Sigma V^{T}$, where V is an orthonormal matrix and Σ is a diagonal matrix

$$
\Sigma=\left[\begin{array}{cc}
\sigma_{1} & 0 \\
0 & \sigma_{2}
\end{array}\right]
$$

with $\sigma_{1} \geq \sigma_{2}$.

There are three cases to consider:

1. $\sigma_{1} \geq \sigma_{2} \gg 0$ In this case there is texture in any direction of the patch.
2. $\sigma_{1} \gg \sigma_{2} \approx 0$ In this case there is texture along only one direction of the patch (eg., an object with bands or ridges)
3. $\sigma_{1} \approx \sigma_{2} \approx 0$ In this case there is no texture in the patch (eg., a smooth surface).

Let's define "corners" as any place in the image where there is sufficient structure to generate nonzero derivatives in both E_{x} and E_{y} (case 1 above).

A simple algorithm to find corners is as follows:

1. Apply the image derivative operators at every pixel in the image. You should use the five-point central-difference operator from Question \#2 above. Note: you do not have to smooth the image as in Question $\# 2$, just compute the derivatives in the horizontal and vertical direction.
2. Collect sums of derivatives for an $N-b y-N$ image patch centered on every pixel. (Note: derivatives only need to be calculated once for each pixel.)
3. Take the singular value decomposition (svd in Matlab) for every patch.
4. Choose the matrix with the largest σ_{2} and label this as a corner point.
5. Remove any points that are within a $2 N$ neighborhood of this corner (to avoid nearduplicate corners).
6. Repeat until either σ_{2} becomes too small, or enough corner points are gathered.

(a) Finding corners [10 marks]

Use the method described above to find the first 50 corners in the image microserf.tif. Use an 7-by-7 image patch for your computation. Show the position of the corners by overlaying markers on the input image.

