
CS 787: Assignment 1, Lighting, Fourier analysis, Feature detection

Due: 5pm, Wed. Feb. 12, 2003.

1. Lightness and shading [10 marks]

(a) Lambertian blocks [3 marks]

Suppose we observe a trihedral junction (ie., a vertex where three faces meet) of a rectangular

block, with known orientation wrt the camera. If the block has a Lambertian surface of

constant albedo, we can determine the direction of a single (distant) light source from the

relative brightness of the three faces of the block.

If the orientation of each face in the camera’s reference frame is given by unit normal

vectors n̂1, n̂2, and n̂3, respectively, show how to obtain the lighting direction and albedo of

the surface.

Note: You can ignore the cos4 θ term in the imaging equation and that we are using

orthographic projection.

(b) Derivation of photometric stereo [2 marks]

(Adapted from Horn, Exercise 10-16) Suppose we have three images of a Lambertian surface

under three different light source directions.

The three images E1, E2, and E3 are given by the following equations,

E1 = ρ(̂s1 · n̂), E2 = ρ(̂s2 · n̂), E3 = ρ(̂s3 · n̂)

where ρ is the surface albedo (may vary with position (x, y)), n̂ is the surface normal (unit

vector), and

ŝi =
(−pi,−qi, 1)T√

1 + p2
i + q2

i

for i = 1, 2, 3 give the directions of the light source.

By subtracting pairs of equations, show that:

ρn̂ · (E1ŝ2 − E2ŝ1) = 0 and ρn̂ · (E2ŝ3 − E3ŝ2) = 0.



The above equation shows that n̂ is perpendicular to both (E1ŝ2−E2ŝ1) and (E2ŝ3−E3ŝ2).

Show that n̂ must be parallel to

(E1ŝ2 − E2ŝ1)× (E2ŝ3 − E3ŝ2) = E2(E1(̂s2 × ŝ3) + E2(̂s3 × ŝ1) + E3(̂s1 × ŝ2))

Conclude that

ρn̂ = k(E1(̂s2 × ŝ3) + E2(̂s3 × ŝ1) + E3(̂s1 × ŝ2))

for some constant k.

By taking the dot product of this relationship with ŝ1, and remembering that E1 =

ρ(̂s1 · n̂), show that

ρ(n̂ · ŝ1) = kE1 [̂s1ŝ2ŝ3]

where [̂s1ŝ2ŝ3] is the triple product ŝ1 · (̂s2 × ŝ3).

Finally, show that k = 1
[̂s1ŝ2ŝ3]

, so that

ρn̂ =
(E1(̂s2 × ŝ3) + E2(̂s3 × ŝ1) + E3(̂s1 × ŝ2))

[̂s1ŝ2ŝ3]

(c) Photometric stereo experiment [5 marks]

I have given you three images of an unknown surface illuminated from three lightsource

directions: s1 = [0, 0, 1]T , s2 = [−1, 1, 2]T , s3 = [1, 0, 3]T . Assuming the light source has the

same radiance at each position (ie., E1 = E2 = E3). Use the expression in part (b) to

compute the surface normal and albedo at each point. To accomplish this, complete the

program photometric.m, and show plots of surface normals and albedo ρ. (Note: Since we

don’t know E, we can only determine ρ only up to a constant factor.)

2. Fourier analysis and wavelets [5 marks]

“Gabor filters” are created by multiplying a sinusoidal grating times a Gaussian window:

Gabor(x, y;u, v, σ) = ei2π(ux+vy)e−(x2+y2)/(2σ2)

where (x, y) is the pixel ((0, 0) at the center of the filter), (u, v) is the spatial frequency and

orientation of the filter (in cycles/pixel), and σ is the filter standard deviation (in pixels).

The complex output of the filter is typically divided into the real and imaginary compo-

nents, called the cosine gabor and sine gabor, respectively.

< [Gabor(x, y;u, v, σ)] = cos(2π(ux+ vy))e−(x2+y2)/(2σ2)



= [Gabor(x, y;u, v, σ)] = sin(2π(ux+ vy))e−(x2+y2)/(2σ2)

(a) Modulation theorem [3 marks]

The modulation theorem states that if f(t) has Fourier transform F (f), then f(t) cos 2πf0t

has Fourier transform 1
2
F (f − f0) + 1

2
(f + f0).

Prove this theorem. (Hint: use the relation cos ax = eiax+e−iax

2
).

One application of the modulation theorem is to show that if f(t) = e−πt
2

cos 2πf0t then

its Fourier transform is F (f) = 1
2

[
e−π(f−f0)2

+ e−π(f+f0)2
]

ie., the power spectrum of a Gabor

filter has a Gaussian distribution.

(b) Space-frequency localization of “Gabor” filters [2 marks]

Consider the 2D Fourier transform:

F (u, v) =
∫ ∞
∞

∫ ∞
∞

f(x, y)e−j2π(ux+vy)dxdy

f(x, y) =
∫ ∞
∞

∫ ∞
∞

F (u, v)ej2π(ux+vy)dudv

where f(x, y) is the image and F (u, v) is its spectrum.

The Similarity theorem shows that f(ax, by) has Fourier transform 1
|ab|F

(
u
a
, v
b

)
. In words:

if we compress a function in the spatial domain, we expand it in the frequency domain.

The similarity theorem can be generalized to show that f(x cos θ+y sin θ,−x sin θ+y cos θ)

has Fourier transform F (u cos θ+ v sin θ,−u sin θ+ v cos θ). Ie., rotating the function in the

spatial domain will rotate the function by the same amount in the frequency domain.

Use the demonstration program gabor-demo.m to show both of these effects. (Hand in

printouts from your experiments.)

Note: To do this problem you need to download the CS787 code. It should decompress it

the directory cs787-software/. You should start matlab and do your course work in the

matlab/ subdirectory. (The file startup.m will be read on starting Matlab.)



3. Feature Detection [10 marks]

As described in Trucco and Verri, Sec. 4.3, we can detect corners by looking at the following

matrix:

C =

[ ∑
I2
x

∑
IxIy∑

IxIy
∑
I2
y

]
where Ix is the image derivative in the x direction, Iy is the derivative in the y direction,

and the summation is taken over some small neighborhood, −N/2 . . . N/2. Here we will use

a 7-by-7 patch.

For a symmetric matrix, C, we can write C = V ΣV T , where V is an orthonormal matrix

and Σ is a diagonal matrix

Σ =

[
σ1 0

0 σ2

]
with σ1 ≥ σ2.

There are three cases to consider:

1. σ1 ≥ σ2 � 0 In this case there is texture in any direction of the patch.

2. σ1 � σ2 ≈ 0 In this case there is texture along only one direction of the patch (eg., an

object with bands or ridges)

3. σ1 ≈ σ2 ≈ 0 In this case there is no texture in the patch (eg., a smooth surface).

Let’s define “corners” as any place in the image where there is sufficient structure to

generate nonzero derivatives in both Ix and Iy (case 1 above).

A simple algorithm to find corners is as follows:

1. Smooth the image using a Gaussian kernel.

2. Apply the image derivative operators at every pixel in the image.

3. Collect sums of derivatives for an N-by-N image patch centered on every pixel. (Note:

derivatives only need to be calculated once for each pixel.)

4. Take the singular value decomposition (svd in Matlab) for every patch.

5. Choose the matrix with the largest σ2 and label this as a corner point.

6. Remove any points that are within a 2N neighborhood of this corner (to avoid near-

duplicate corners).

7. Repeat until either σ2 becomes too small, or enough corner points are gathered.



(a) Finding corners [10 marks]

Use the method described above to find the first 50 corners in the image microserf.tif. Use

an 7-by-7 image patch for your computation. Show the position of the corners by overlaying

markers on the input image. Please print out your program and submit it (hardcopy) along

with your images.

To blur the image use the Gaussian kernel:

G(x, y;σ) =
1

2πσ
exp

(
− 1

2σ2
(x2 + y2)

)
You should implement the Gaussian filter efficiently, using separable filters in x and y. You

may try various values values of σ. A value of σ = 2 often works well.

To compute the derivatives, you should use the five-point central-difference operator:

f ′i =
−fi+2 + 8fi+1 − 8fi−1 + fi−2

12h
+O(h4)

where h = 1.

Comment: Since you have already computed image derivatives, you may wish to experiment

with edge detection on this image. The formulas for edge strength and edge orientation are

given in Trucco & Verri, §4.2.2.


