
CS 498/698: Assignment 2, Linear Systems and Feature Detection

Due: 11:30am, Tues. Feb. 14, 2006.

1. Fourier analysis and wavelets [5 marks]

“Gabor filters” are created by multiplying a sinusoidal grating times a Gaussian window:

Gabor(x;k, σ) = eik·xe−(x2+y2)/(2σ2)

where x = [x, y]T is the pixel ((0, 0) at the center of the filter), k = [kx, ky]
T is the spatial

frequency and orientation of the filter (in cycles/pixel), and σ is the filter standard deviation

(in pixels).

The complex output of the filter is typically divided into the real and imaginary compo-

nents, called the sine gabor and cosine gabor, respectively.

< [Gabor(x;k, σ] = cos(k · x)e−(x2+y2)/(2σ2)

= [Gabor(x;k, σ] = sin(k · x)e−(x2+y2)/(2σ2)

(a) Modulation theorem [3 marks]

The modulation theorem states that if f(t) has Fourier transform F (f), then f(t) cos 2πf0t

has Fourier transform 1
2
F (f − f0) + 1

2
F (f + f0).

Prove this theorem. (Hint: use the relation cos ax = eiax+e−iax

2
).

One application of the modulation theorem is to show that if f(t) = e−πt2 cos 2πf0t then

its Fourier transform is F (f) = 1
2

[
e−π(f−f0)2 + e−π(f+f0)2

]
ie., the power spectrum of a Gabor

filter has a Gaussian distribution.

(b) Space-frequency localization of “Gabor” filters [2 marks]

Consider the 2D Fourier transform:

F (u, v) =
∫ ∞

∞

∫ ∞

∞
f(x, y)e−j2π(ux+vy)dxdy



f(x, y) =
∫ ∞

∞

∫ ∞

∞
F (u, v)ej2π(ux+vy)dudv

where f(x, y) is the image and F (u, v) is its spectrum.

The Similarity theorem shows that f(ax, by) has Fourier transform 1
|ab|F

(
u
a
, v

b

)
. In words:

if we compress a function in the spatial domain, we expand it in the frequency domain.

The similarity theorem can be generalized to show that f(x cos θ+y sin θ,−x sin θ+y cos θ)

has Fourier transform F (u cos θ + v sin θ,−u sin θ + v cos θ). Ie., rotating the function in the

spatial domain will rotate the function by the same amount in the frequency domain.

Use the demonstration program gabor-demo.m to show both of these effects. (Hand in

printouts from your experiments.)

Note: To do this problem you need to download the CS498 code, decompress it into the

cs498/ directory, and start matlab from the cs498/matlab/ directory. You are welcome to

experiment with the other code, to learn about linear systems, filtering, and image pyramids.

2. Linear Systems and Edge Detection [8 marks]

Here you will implement the edge strength detector described in Trucco and Verri, Sec. 4.2.2.

The edge strength at pixel (i, j) is computed as

s(i, j) =‖ ∇(G⊗ I) ‖

where ∇f ≡ [∂f/∂x, ∂f/∂y]T is the derivative operator, I(x, y) is the image, and G is a

Gaussian kernel

G(x, y; σ) =
1

2πσ
exp

(
− 1

2σ2
(x2 + y2)

)

Due to the associativity of linear operations (differentiation and convolution), we can

rewrite the above as:

∇(G⊗ I) = (∇G)⊗ I

where ∇G is the derivative of the Gaussian kernel.

Note that∇G =
[

∂G
∂x

, ∂G
∂y

]T
denotes two filter kernels, one for each derivative. Let’s denote

these kernels, Gx(x, y) and Gy(x, y) to represent differentiation by x and y respectively.



(a) Calculating the filter masks [2 marks]

Plot the (2D) filters Gx(x, y) and Gy(x, y) for σ = 2 and for −10 ≤ x ≤ 10, −10 ≤ y ≤ 10.

You can use a mesh, contour, or a greyscale plot to display your filters. Note: Use the

following five point, central difference operator to compute the derivatives:

f ′
i =

−fi+2 + 8fi+1 − 8fi−1 + fi−2

12h
+ O(h4)

where h = 1.

(b) Computing edge strength s(i, j) [4 marks]

Compute the edge strength s(i, j) for the image einstein.tif. You may use the conv2

command in Matlab for 2D convolution with Gx(x, y) and Gy(x, y).

(c) Linear filtering operations [2 marks]

Explain the advantage (if any) of computing (∇G)⊗ I vs. ∇(G⊗ I).

(d) Separable filters [2 bonus marks]

The operation in (b) can be achieved by successive application of two 1D filters. Write (but

don’t program) an expression for these convolutions.

3. Corner Detection [10 marks]

As described in Trucco and Verri, Sec. 4.3, we can detect corners by looking at the following

matrix:

C =

[ ∑
E2

x

∑
ExEy∑

ExEy
∑

E2
y

]
where Ex is the image derivative in the x direction, Ey is the derivative in the y direction,

and the summation is taken over some small neighborhood, −N/2 . . . N/2. Here we will use

a 7-by-7 patch.



For a symmetric matrix, C, we can write C = V ΣV T , where V is an orthonormal matrix

and Σ is a diagonal matrix

Σ =

[
σ1 0

0 σ2

]
with σ1 ≥ σ2.

There are three cases to consider:

1. σ1 ≥ σ2 � 0 In this case there is texture in any direction of the patch.

2. σ1 � σ2 ≈ 0 In this case there is texture along only one direction of the patch (eg., an

object with bands or ridges)

3. σ1 ≈ σ2 ≈ 0 In this case there is no texture in the patch (eg., a smooth surface).

Let’s define “corners” as any place in the image where there is sufficient structure to

generate nonzero derivatives in both Ex and Ey (case 1 above).

A simple algorithm to find corners is as follows:

1. Apply the image derivative operators at every pixel in the image. You should use the

five-point central-difference operator from Question #2 above. Note: you do not have

to smooth the image as in Question #2, just compute the derivatives in the horizontal

and vertical direction.

2. Collect sums of derivatives for an N-by-N image patch centered on every pixel. (Note:

derivatives only need to be calculated once for each pixel.)

3. Take the singular value decomposition (svd in Matlab) for every patch.

4. Choose the matrix with the largest σ2 and label this as a corner point.

5. Remove any points that are within a 2N neighborhood of this corner (to avoid near-

duplicate corners).

6. Repeat until either σ2 becomes too small, or enough corner points are gathered.

(a) Finding corners [10 marks]

Use the method described above to find the first 50 corners in the image microserf.tif. Use

an 7-by-7 image patch for your computation. Show the position of the corners by overlaying

markers on the input image.


