
CS 498/698: Assignment 1, Image Formation and Lighting

Due: 11:30am, Tues. Jan. 31, 2006.

1. Perspective projection [4 marks]

(a) Trucco and Verri, Question 2.3. [2 marks]

Show that, in the pinhole camera model, three collinear points in 3-D space are imaged onto

three collinear points on the image plane.

Recall the equations of perspective projection:

x =
f

Z
X; y =

f

Z
Y

where P = (X, Y, Z)T is the 3-D point and p = (x, y)T is the 2-D point, and f is the focal

length.

(b) Horn, Exercise 2-12. [2 marks]

Straight lines in the three-dimensional world are projected as straight lines into the two-

dimensional image. The projections of parallel lines intersect at a vanishing point in the

image plane. When does the vanishing point of a family of parallel lines lie at infinity?

In the case of a rectangular object, a great deal of information can be recovered from

lines in the images and their intersections. The edges of a rectangular solid fall into three

sets of parallel lines, and so give rise to three vanishing points. In technical drawing one

speaks of one-point, two-point, and three-point perspective. These terms apply to the cases

in which two, one, or none of the three vanishing points lie at infinity. What alignment

between the edges of the object and the image plane applies in each case? (Draw a diagram

and/or describe in words.)

2. Combining images of different exposure [8 marks]

Finding the camera response function. Suppose we have P images taken at different

exposure times ∆tj, j = 1 . . . P . Let Iij be the brightness of pixel i in image j. In each image



i = 1 . . . N pixels are measured. The brightness of each pixel is

Iij = f(Ei∆tj)

where I is the image brightness, E is the (unknown) scene brightness, and f() is the (un-

known) camera response function that maps the image brightness onto a discrete set of pixel

values. Note that f is a function of the product of the scene brightness and the exposure

time. That is, if the exposure time is doubled, the input to f doubles. The image brightness,

however, is generally a nonlinear function of scene brightness.

Given a series of measurements, we solve for f as follows:

f−1(Iij) = Ei∆tj

ln f−1(Iij) = ln Ei + ln ∆tj

Letting g = ln f−1, gives

g(Iij) = ln Ei + ln ∆tj

where i = 1 . . . N (pixels) and j = 1 . . . P (images).

To solve for g we select some subset of pixels (eg., 200 points) in all frames and minimize

the following quadratic function.

ε2 =
∑

i=1...N

∑
j=1..P

[w(Iij) (g(Iij)− ln Ei − ln ∆tj)]
2 + λ

n−1∑
z=2

[w(z)g′′(z)]
2

where g′′(z) = g(z − 1) − 2g(z) + g(z + 1) and n is the number of grayscale levels in the

image. The first term fits the camera response function, while the second term acts as a

smoothing term that prefers functions with low curvature. λ > 0 trades off the effects of

these two terms. A value of λ = 100 was used in our experiments. w is a weighting function

that emphasizes the fit when pixels are near the midpoint of their range.

w(z) =

{
n− z if z > n/2

z if z ≤ n/2

Finally, we add a constraint g(n/2) = 0. This constrains the function g to be zero at the

midpoint of its domain. This is necessary since the above equations only determine g up to

a constant factor.

The above function is minimized using the singular value decomposition. The result is a

camera response function g(z), z = 1 . . . n and a set of brightness values ln Ei, i = 1 . . . N .

(a) Equation counting [2 marks]

Write the number of equations and unknowns for the above equations in terms of N , P , and

n. Compute these numbers when N = 200, P = 3, and n = 256, the case in our experiments

below.



Combining images of different exposure. Since we can only determine the image

response function g up to a scale factor, we let ∆tj = 1 for a reference image.

For each image Ij, we can compute the estimated scene brightness:

Êj =
1

∆tj
f−1(Ij) =

1

∆tj
eg(Ij)

Using all images, we estimate the brightness:

Ê =
∑

j=1...P

w(Ij)Êj

Z

where Z =
∑

j wj(Ij) and w is the pixel weighting function: (Note: w, E, Ij, and Z are all

functions of pixel position (x, y).)

To display the composite image, we plot log Ê. Note that since this accentuates the low

intensity information, it is not directly comparable with the input images Ij.

(b) Experiments [6 marks]

In the program, wyckoff.m, I use three images, taken with exposure values (EV) as follows:

(2, 1, 1
2
√

2
). A unit change in exposure value corresponds to a doubling or halving of exposure

times. It may be achieved by either changing the exposure time, the camera aperature, or

both. Please do the following experiments:

1. Run the program, print out, and comment on the composite image. In particular, what

details does it capture that are not visible in the input images?

2. Modify the program to compute Êj, i = 1 . . . 3, the estimated radience from each

input image. To compare the images, use the commands imshow(log(E1),[-4 4]),

imshow(log(E2),[-4 4]), imshow(log(E3),[-4 4]). This plots each image on a log

scale, and sets the ranges ([−4, 4]) to be the same. To what parts of the composite

does each image contribute? Hint: you can also look at the “ownership” images for Ij.

3. What is the role of the smoothing term λ? To demonstrate its effect, try fitting the

response curve with λ = 10 (low value) and λ = 1000 (high value). Print out the plots

of the response functions and comment on your findings.



3. Lightness and shading [12 marks]

(a) Lambertian blocks [4 marks]

Suppose we observe a trihedral junction (ie., a vertex where three faces meet) of a rectangular

block, with known orientation wrt the camera. If the block has a Lambertian surface of

constant albedo, we can determine the direction of a single (distant) light source from the

relative brightness of the three faces of the block.

If the orientation of each face in the camera’s reference frame is given by unit normal

vectors n̂1, n̂2, and n̂3, respectively, show how to obtain the lighting direction and albedo of

the surface.

Note: You can ignore the cos4 θ term in the imaging equation and that we are using

orthographic projection.

(b) Derivation of photometric stereo [3 marks]

(Adapted from Horn, Exercise 10-16) Suppose we have three images of a Lambertian surface

under three different light source directions.

The three images E1, E2, and E3 are given by the following equations,

E1 = ρ(̂s1 · n̂), E2 = ρ(̂s2 · n̂), E3 = ρ(̂s3 · n̂)

where ρ is the surface albedo (may vary with position (x, y)), n̂ is the surface normal (unit

vector), and

ŝi =
(−pi,−qi, 1)T√

1 + p2
i + q2

i

for i = 1, 2, 3 give the directions of the light source.

By subtracting pairs of equations, show that:

ρn̂ · (E1ŝ2 − E2ŝ1) = 0 and ρn̂ · (E2ŝ3 − E3ŝ2) = 0.

The above equation shows that n̂ is perpendicular to both (E1ŝ2−E2ŝ1) and (E2ŝ3−E3ŝ2).

Show that n̂ must be parallel to

(E1ŝ2 − E2ŝ1)× (E2ŝ3 − E3ŝ2) = E2(E1(̂s2 × ŝ3) + E2(̂s3 × ŝ1) + E3(̂s1 × ŝ2))



Conclude that

ρn̂ = k(E1(̂s2 × ŝ3) + E2(̂s3 × ŝ1) + E3(̂s1 × ŝ2))

for some constant k.

By taking the dot product of this relationship with ŝ1, and remembering that E1 =

ρ(̂s1 · n̂), show that

ρ(n̂ · ŝ1) = kE1 [̂s1ŝ2ŝ3]

where [̂s1ŝ2ŝ3] is the triple product ŝ1 · (̂s2 × ŝ3).

Finally, show that k = 1
[̂s1ŝ2ŝ3]

, so that

ρn̂ =
(E1(̂s2 × ŝ3) + E2(̂s3 × ŝ1) + E3(̂s1 × ŝ2))

[̂s1ŝ2ŝ3]

(c) Photometric stereo experiment [5 marks]

I have given you three images of an unknown surface illuminated from three lightsource

directions: s1 = [0, 0, 1]T , s2 = [−1, 1, 2]T , s3 = [1, 0, 3]T . Assuming the light source has

the same radiance at each direction (ie., E1 = E2 = E3), use the expression in part (b) to

compute the surface normal and albedo at each point. To accomplish this, complete the

program photometric.m, and show plots of surface normals and albedo ρ. Note: Since we

don’t know E, we can only determine ρ only up to a constant factor. Remember to normalize

the light source directions s1, s2, s3 to unit vectors in your code.


