Office hours: Friday 3-5 PM.

Tutorial: Monday, Next Week

Assn #3 (Out Friday): LSQ, Robust Mixture

Today: Optical Flow

Vectors converge, but speeds depend on \(\frac{1}{z} \) in depth.

Applications

- "Egomotion" get camera motion from flow field in a rigid environment.
- "Scene Reconstruction" depth map
 - object tracking - image registration - segmentation

Original notes from Gibson 1966 "Ecological Optics"
Optical Flow (TV Ch 8, Ch 12)

Fleet Unit

Measurement of Image Velocity

Fourier Methods

\[\mathbf{i} = (x, y, z) \]

Assumptions

1. Uniqueness - every image point corresponds to a unique scene point. Violated at occlusion boundaries, or transparency.

2. Observable Image Motion

3. Correspondence between image features and scene markings

\[\text{moving light source} \]

\[\text{induces shadow change not due to motion.} \]
1. **Matching Techniques** (e.g., track corners, edges)

2. **Differential Techniques**

3. **Fourier methods**

Differential Techniques

Intuition

\[I(x) \]

\[V = \frac{dx}{dt} = -\frac{\partial I}{\partial x} \]

Total derivative

\[0 = \frac{\partial I}{\partial t} = \frac{\partial I}{\partial x} \frac{dx}{dt} + \frac{\partial I}{\partial y} \frac{dy}{dt} + \frac{\partial I}{\partial y} \quad \text{(Chain rule)} \]

Optical *5.10* (2d *5.810*1)

I(x,y,t)

\[0 = \frac{\partial I(x,y,t)}{\partial t} = \frac{\partial I}{\partial x} \frac{dx}{dt} + \frac{\partial I}{\partial y} \frac{dy}{dt} + \frac{\partial I}{\partial y} \quad \text{(Chain rule)} \]

\[\nabla I = \left[\frac{\partial I}{\partial x}, \frac{\partial I}{\partial y} \right]^T \quad \mathbf{V} = \left(\frac{dx}{dt}, \frac{dy}{dt} \right) \]
\[0 = D \nabla \cdot \mathbf{v} + \frac{\partial \mathbf{v}}{\partial t} \]

Brightness Constancy Condition (BCC)

Problem: 1 equation, but 2 unknowns

\[\frac{\partial x}{\partial t}, \frac{\partial y}{\partial t} \]

Comments

1. \[\frac{\partial \mathbf{v}}{\partial t} = 0 \]
 - More transients only
 - Does not change brightness
 - Does not desaturate
 - BCC
 - More final constraint equation

2. \[\mathbf{v} = \left(\frac{\partial x}{\partial t}, \frac{\partial y}{\partial t} \right) \] is under constrained

\[f(x, y, t) \quad f(x, y, t + \Delta t) \]

3. Brightness often sensitive to lighting, shadows, etc. Often use filtered outputs (e.g., phase of a color filter)
Aistence problem

\(\mathbf{F}(x,y,t) \) \hspace{1cm} \(\mathbf{F}(x,y, t+\Delta t) \)

Local region

where BC is applied

Possible neighbors

Normal component of motion

Can only observe normal motion

Constraint Lines

\[\nabla \mathbf{F} = \left(\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y} \right) \]

Line of possible motion

\[\nabla \mathbf{F} \cdot \mathbf{V} = -F_x \]

Constant
Some use regions of images (with similar velocities)
but more than one image derivative direction

Intersection constraints by LSA

Intersection constraints

Region \rightarrow not enough orientations
Too small \rightarrow noisy

Region \rightarrow multiple orientations
Too big \rightarrow reflections
Transparency
Periallax

Method #1 Horn & Schunk (1980)

Regularization of the flow field

\[
\mathcal{E}_C = \iint (E_x(u) + E_y(v) + \mathbf{f}_0)^2 \, dx \, dy
\]

BCC constraint \(u = \frac{dx}{dt}, \) \(v = \frac{dy}{dt} \)

\[
\mathcal{E}_S = \iint \left[(u_x^2 + u_y^2) + (v_x^2 + v_y^2) \right] \, dx \, dy
\]

Smoothness regularizes down value of velocity
\[\varepsilon = \sum c + \lambda \varepsilon_5 \]

(smoothness term "regularization"

Method #2 (Lucas & Kanade)

\[
\begin{bmatrix}
I_x(p_i) & I_y(p_i) \\
I_x(p_i) & I_y(p_i) \\
\vdots & \vdots \\
I_x(p_n) & I_y(p_n)
\end{bmatrix}
\begin{bmatrix}
U \\
V
\end{bmatrix} =
\begin{bmatrix}
-I_x(p_i) \\
-I_y(p_i) \\
\vdots \\
-I_x(p_n)
\end{bmatrix}
\]

\[
\begin{align*}
A & = \begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix} \\
\varepsilon & = \frac{1}{n} \sum_{i=1}^{n} \|AV - b\|_2^2
\end{align*}
\]

\[
\begin{align*}
\varepsilon & = \frac{C}{\sum_{i=1}^{n} \|AV - b\|_2^2} \\
C & = \sum_{i=1}^{n} \begin{bmatrix}
I_x^2 & I_x I_y \\
I_x I_y & I_y^2
\end{bmatrix}
\end{align*}
\]

If \(\varepsilon = 0 \) then no deviations

1. Normal flow
2. 2D flow

"Burton, Bedewany, Fleet, Jepson" (performance of optical flow techniques)
\[\mathbb{Z}^{n} = \mathbb{Z} \times \mathbb{Z} \times \cdots \times \mathbb{Z} \]

\[\mathbb{C} = \mathbb{R} + i\mathbb{R} \]

\[(\nu_0, \nu_{\gamma}) = c \]