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ABSTRACT
Despite a decade of active research, there is a marked lack in
clone detectors that scale to very large repositories of source
code, in particular for detecting near-miss clones where sig-
nificant editing activities may take place in the cloned code.
We present SourcererCC, a token-based clone detector that
targets three clone types, and exploits an index to achieve
scalability to large inter-project repositories using a stan-
dard workstation. SourcererCC uses an optimized inverted-
index to quickly query the potential clones of a given code
block. Filtering heuristics based on token ordering are used
to significantly reduce the size of the index, the number
of code-block comparisons needed to detect the clones, as
well as the number of required token-comparisons needed to
judge a potential clone.

We evaluate the scalability, execution time, recall and
precision of SourcererCC, and compare it to four publicly
available and state-of-the-art tools. To measure recall, we
use two recent benchmarks, (1) a large benchmark of real
clones, BigCloneBench, and (2) a Mutation/Injection-based
framework of thousands of fine-grained artificial clones. We
find SourcererCC has both high recall and precision, and is
able to scale to a large inter-project repository (250MLOC)
using a standard workstation.

1. INTRODUCTION
Clone detection locates exact or similar pieces of code,

known as clones, within or between software systems. Clones
are created when developers reuse code by copy, paste and
modify, although clones may be created by a number of other
means [25]. Developers need to detect and manage their
clones in order to maintain software quality, detect and pre-
vent new bugs, reduce development risks and costs, and so
on [25, 24]. Clone management and clone research studies
depend on quality tools. According to Rattan et al. [1], at
least 70 diverse tools have been presented in the literature.

With the amount of source code increasing steadily, large-
scale clone detection has become a necessity. Large-scale
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clone detection can be used for mining library candidates [15],
detecting similar mobile applications [6], license violation de-
tection [20, 9], reverse engineering product lines [12, 9], find-
ing the provenance of a component [8], and code search [19,
18]. Large-scale clone detection allows researchers to study
cloning in large software ecosystems (e.g., Debian), or study
cloning in open-source development communities (e.g., GitHub).
Developers often clone modules or fork projects to meet the
needs of different clients, and need the help of large-scale
clone detectors to merge these cloned systems towards a
product-line style of development. These applications re-
quire tools that scale to hundreds of millions of lines of code.
However, very few tools can scale to the demands of clone
detection in very large code bases [31, 24].

A number of tools have been proposed to achieve a few
specific applications of large-scale clone detection [20, 19,
6]. These tools make some assumptions regarding the re-
quirements of their target domain that help with scalabil-
ity. These domain-specific tools are not described as general
large-scale clone detectors, and may face significant scala-
bility challenges for general clone detection. General pur-
pose clone detection is required for clone studies in large
inter-project repositories and to help developers manage and
merge their related software forks, as well as for use in the
domain-specific activities. Scalable general purpose clone
detection has been achieved by using deterministic [21] or
non-deterministic [31] input partitioning and distributed ex-
ecution of an existing non-scalable detector, using large dis-
tributed code indexes [14], or by comparing hashes after
Type-1/2 normalization [15]. These existing techniques have
a number of limitations. The novel scalable algorithms [14,
15] do not support Type-3 near-miss clones, where minor to
significant editing activities might have taken place in the
copy/pasted fragments, and therefore miss a large portion
of the clones, since there are more Type-3 in the repositories
than other types [24, 26, 30]. Type-3 clones can be the most
needed in large-scale clone detection applications [24, 19,
6]. While input partitioning can scale existing non-scalable
Type-3 detectors, this significantly increases the cumulative
runtime, and requires distribution over a large cluster of
machines to achieve scalability in absolute runtime [21, 31].
Distributable tools [21] can be costly and difficult to setup.

We set out to develop a clone detection technique and
tool that would satisfy the following requirements: (1) ac-
curate detection of near-miss clones, where minor to signifi-
cant editing changes occur in the copy/pasted fragments; (2)
programming language agnostic; (3) simple, non-distributed
operation; and (4) scalability to hundreds of millions of lines
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of code. To that effect, we introduce SourcererCC, a token-
based accurate near-miss clone detector that exploits an op-
timized index to scale to hundreds of millions of lines of code
(MLOC) on a single machine. SourcererCC compares code
blocks using a simple and fast bag-of-tokens1 strategy which
is resilient to Type-3 changes. Clone candidates of a code
block are queried from a partial inverted index. A filter-
ing heuristic is used to reduce the size of the index, which
drastically reduces the number of required code block com-
parisons to detect the clones. It also exploits the ordering
of tokens to measure a live upper bound on the similarity
of code blocks in order to reject or accept a clone candidate
with fewer token comparisons. We found this technique has
strong recall and precision for the first three clone types.
SourcererCC is able to accurately detect exact and near-
miss clones in 250MLOC on a single machine in only 4.5
days. We make two different versions of the tool available:
(i) SourcererCC-B, a batch version of the tool that is more
suitable for empirical analysis of the presence of clones in a
system or a repository; and (ii) SourcererCC-I, an interac-
tive version of the tool integrated with Eclipse IDE to help
developers instantly find clones during software development
and maintenance.

We evaluate the scalability, execution time and detection
quality of SourcererCC. We execute it for inputs of various
domains and sizes, including the Big Data inter-project soft-
ware repository IJaDataset-2.0 [3] (25,000 projects, 250MLOC,
3 million files), and observed good execution time and no
scalability issues even on a standard machine with 3.5GHz
quad-core i7 CPU and 12GB of memory. We measure its
clone recall using two proven [33, 34] clone benchmarks.
We use BigCloneBench [30], a Big Data benchmark of real
clones that spans the four primary clone types and the full
spectrum of syntactical similarity. We also use The Muta-
tion and Injection Framework [35, 23], a synthetic bench-
mark that can precisely measure recall at a fine granularity.
We measure precision by manually validating a sample of
its output. We compare these results against public avail-
able popular and state-of-the-art tools, including CCFind-
erX [17], Deckard [16], iClones [10] and NiCad [7]. We find
that SourcererCC is the only tool to scale to Big Data inputs
without scalability issues on standard workstation. Sourcer-
erCC has strong precision and recall, and is competitive with
the other tools.
Outline: The rest of the paper is organized as follows. Sec-
tion 2 describes important concepts and definitions. Sec-
tion 3 presents SourcererCC’s clone detection process in de-
tail. Section 4 describes various experiments conducted to
evaluate the scalability, recall and precision of SourcererCC
against state-of-the-art tools on various benchmarks, with
threats to validity discussed in Section 5. After drawing
connections with the related work in Section 6, Section 7
concludes with a summary of the findings.

2. DEFINITIONS
The paper uses following well-accepted definitions of code

clones and clone types [4, 25].:
Code Fragment: A continuous segment of source code,

specified by the triple (l, s, e), including the source file l, the
line the fragment starts on, s, and the line it ends on, e.

91 Similar to the popular bag-of-words model [39] in Informa-
tion Retrieval

Clone Pair: A pair of code fragments that are similar,
specified by the triple (f1, f2, φ), including the similar code
fragments f1 and f2, and their clone type φ.

Clone Class: A set of code fragments that are similar.
Specified by the tuple (f1, f2, ..., fn, φ). Each pair of distinct
fragments is a clone pair: (fi, fj , φ), i, j ∈ 1..n, i 6= j.

Code Block: A sequence of statements, local class and
variable declaration statements within braces.

Type-1(T1): Identical code fragments, except for differ-
ences in white-space, layout and comments.

Type-2(T2): Identical code fragments, except for differ-
ences in identifier names and literal values, in addition to
Type-1 clone differences.

Type-3(T3): Syntactically similar code fragments that
differ at the statement level. The fragments have statements
added, modified and/or removed with respect to each other,
in addition to Type-1 and Type-2 clone differences.

Type-4(T4): Syntactically dissimilar code fragments that
implement the same functionality

3. THE PROPOSED METHOD: SourcererCC

3.1 Problem Formulation
We assume that a project P is represented as a collection

of code blocks P : {B1, ..., Bn}. In turn, a code block B is
represented as a bag-of-tokens B : {T1..., Tk}. A token is
considered as programming language keywords, literals, and
identifiers. A string literal is split on whitespace and opera-
tors are not included. Since a code block may have repeated
tokens, eack token is represented as a (token, frequency)
pair. Here, frequency denotes the number of times token
appeared in a code block.

In order to quantitatively infer if two code blocks are
clones, we use a similarity function which measures the de-
gree of similarity between code blocks, and returns a non-
negative value. The higher the value, the greater the sim-
ilarity between the code blocks. As a result, code blocks
with similarity value higher than the specified threshold are
identified as clones.

Formally, given two projects Px and Py, a similarity func-
tion f , and a threshold θ, the aim is to find all the code
block pairs (or groups) Px.B and Py.B s.t f(Px.B, Py.B) ≥
d θ ·max(|Px.B|, |Py.B|) e. Note that for intra-project sim-
ilarity, Px and Py are the same. Similarly, all the clones in
a project repository can be revealed by doing a self-join on
the entire repository itself.

While there are many choices of similarity function, we use
Overlap3 because it intuitively captures the notion of over-
lap among code blocks. For example, given two code blocks
Bx and By, the overlap similarity O(Bx, By) is computed as
the number of source tokens shared by Bx and By.

O(Bx, By) = |Bx ∩By| (1)

In other words, if θ is specified as 0.8, and max(|Bx|, |By|)
is t, then Bx and By should at least share dθ ˙|t|e tokens to
be identified as a clone pair

In order to detect all clone pairs in a project or a repos-
itory, the above approach of computing similarity between
two code blocks can simply be extended to iterate over all the

93The presented approach can be used with other Jaccard and
Cosine similarity functions as well.
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Figure 1: Growth in number of candidate compar-
isons with the increase in the number of code blocks

code blocks and compute pairwise similarity for each code
block pair. For a given code block, all the other code blocks
compared are called candidate code blocks or candidates in
short.

While the approach is very simple and intuitive, it is also
subjected to a fundamental problem that prohibits scala-
bility - O(n2) time complexity Figure 1 describes this by
plotting the number of total code blocks (X-axis) vs. the
number of candidate comparisons (Y-axis) in 35 Apache
projects 2. Note that the granularity of a code block is taken
as a method. Points denoted by the ◦ show that the num-
ber of candidate comparisons increase quadratically3 with
the increase in number of methods. Later in Section 3
while describing SourcererCC, we will propose two filtering
heurisitics that significantly reduce the number of candidate
comparisons during clone detection.

3.2 Overview
SourcererCC’s general procedure is summarized in Fig-

ure 3. It operates in two primary stages: (i) partial index
creation; and (ii) clone detection.

In the index creation phase, it parses the code blocks from
the source files, and tokenizes them with a simple scanner
that is aware of token and block semantics of a given lan-
guage 4. From the code blocks it builds an inverted index
mapping tokens to the blocks that contains them. Unlike
previous approaches, it does not create an index of all to-
kens in the code blocks, instead it uses a filtering heuristic
(Section 3.3.1) to construct a partial index of only a subset
of the tokens in each block.

In the detection phase, SourcererCC iterates through all of
the code blocks, retrieves their candidate clone blocks from
the index. As per the filtering heuristic, only the tokens
within the sub-block are used to query the index, which re-
duces the number of candidate blocks. After candidates are
retrieved, SourcererCC uses another filtering heuristic (Sec-
tion 3.3.2), which exploits ordering of the tokens in a code

92The list is available at http://mondego.ics.uci.edu/
projects/SourcererCC/

93The curve can also be represented using y = x(x − 1)/2
quadratic function where x is the number of methods in a project
and y is the number of candidate comparisons carried out to detect
all clone pairs.

94Currently we have implemented this for Java, C and C#, but
can be easily extended to other languages

Figure 2: SourcererCC’s clone detection process

block to measure a live upper-bound and lower-bound of
similarity scores between the query and candidate blocks.
Candidates whose upper-bound falls below the similarity
threshold are eliminated immediately without further pro-
cessing. Similarly, candidates are accepted as soon as their
lower-bound exceeds the similarity threshold. This is re-
peated until the clones of every code block are located.
SourcererCC exploits symmetry to avoid detecting the same
clone twice.

In the following sections, we provide a detailed descrip-
tion of the filtering heuristics and overall clone detection
algorithm.

3.3 Filtering Heuristics to Reduce Candidate
Comparisons

This section describes filtering heurisitics that enable Sourcer-
erCC to effectively reduce the number of candidate code
blocks comparison during clone detection.

3.3.1 Sub-block Overlap Filtering
The filtering heuristics are inspired by the work of Sarawagi

et al. [29] and Vernica et al. [36] on set similarity. It follows
an intuition that when two sets have a large overlap, even
their smaller subsets overlap. Since we represent code blocks
as bag-of-tokens (i.e. a multiset), we can extend this idea
to code blocks, i.e., when two code blocks have large over-
lap, even their smaller sub-blocks should overlap as shown
in [28]. Formally, we can state it in the form of the following
property:
Property 1: Given blocks Bx and By consisting of t tokens
each in some predefined order, if |Bx∩By| ≥ i, then the sub-
blocks SBx and SBy of Bx and By respectively, consisting
of first t− i+ 1 tokens, must match at least one token.

To understand the implications of this property in clone
detection, let us consider two code blocksBx = {a, b, c, d, e}
and By = {b, c, d, e, f} with 5 tokens (t = 5) each. Let θ be
specified as 0.8 meaning that the two blocks should match at
least d0.8∗5e = 4 tokens to be considered clones i.e, (i = 4).

According to Property 1, in order to find out if Bx and By

are clones, we can only check if their sub-blocks consisting
of first t− i+ 1 = 2 tokens match at least one token. In this
case, they do, as token b is common in both the sub-blocks
(marked in bold). However, if they had not shared any to-
ken, then even without looking at the remaining tokens of
the blocks, we could have most certainly figured that Bx and
By will no t end up as a clone pair for the given θ. In other
words, Property 1 suggests that instead of comparing all the

http://mondego.ics.uci.edu/projects/SourcererCC/
http://mondego.ics.uci.edu/projects/SourcererCC/


tokens of Bx and By against each other, we could compare
only their sub-blocks consisting of first t − i + 1 tokens to
deduce if B1 and B2 will not be clones.

In order to apply Property 1, the tokens in code blocks
should follow a predefined global order. While there are
many ways in which tokens in a block can be ordered e.g.,
alphabetical order, length of tokens, occurance frequency of
token in a corpus, etc., a natural question is what order
is most effective in this context. As it turns out, software
vocabulary exhibits very similar characteristics to natural
languages corpus and also follow Zipf’s law [13, 40]. That
is, there are few very popular (frequent) tokens, and the fre-
quency of tokens decreases very rapidly with rank. In other
words, while most of the code blocks are likely to contain
one or more of few very popular tokens (e.g., keywords, or
common identifier names like i, j, count, etc.) not many
will share rare tokens (e.g., identifiers that are domain or
project specific). So if code blocks are ordered according to
the popularity of tokens in the corpus, naturally, their sub-
blocks will consist of these rare tokens. Such arrangement
will ensure low probability of different sub-blocks sharing
similar token. In other words, this ordering will eliminate
more false positive candidates.5.

To describe how effective this filtering is, points denoted
by 4 in Figure 1 show the number of candidate compar-
isons after applying the filtering. The difference with the
earlier curve (◦) show the impact of filtering in eliminating
candidate comparisons.

The below section discusses when the use of Property 1
may still be ineffective and demonstrate how ordering of
tokens in a code block can be further exploited to formalize
yet another filtering heuristic that is extremely effective in
eliminating even more candidate comparisons.

3.3.2 Token Position Filtering
In order to understand when Property 1 may be inef-

fective, consider code blocks Bx and By from the previ-
ous example, except Bx now has one fewer token. Hence
Bx = {a, b, c, d} and By = {b, c, d, e, f}.

Assuming the same value of θ, the blocks must still match
tokens (d θ ·max(|Bx|, |By|) e = d0.8 ∗ 5e = 4) to be a clone
pair. But since the two blocks have only 3 tokens in common,
they cannot be identified as a clone pair. However, note that
their sub-blocks (shown in bold) consisting of first t−i+1 =
2 tokens still have a common token b. As a result, Property
1 is satisfied and By will be identified as a candidate of
Bx although Bx and By eventually will not end up as a
clone pair. In general, cases when the code blocks have
fairly different sizes it is likely that they may result into
false positives even after satisfying Property 1.

Interestingly, to overcome this limitation, the ordering of
tokens in code blocks can be exploited. For example, if we
closely examine the position of the matched token b in Bx

and By, we can obtain an estimate of the maximum possible
overlap between Bx and By as the sum of current matched
tokens and the minimum number of unseen tokens in Bx

and By, i.e., 1 + min(2, 4) = 3. Since this upper bound on
overlap is already smaller than the needed threshold of 4
tokens, we can safely reject By as a candidate of Bx. Note
that we can compute a safe upper bound (without violating
the correctness) because the blocks follow a predefined order.

95Candidates that eventually will not be identified as clones of a
code block are known as false positive candidates for that block

The above heuristic can be formally stated as follows.
Property 2: Let blocks Bx and By be ordered and ∃ token
t at index i in Bx, s.t Bx is divided in to two parts, where
Bx(first) = Bx[1...(i− 1)] and Bx(second) = Bx[i...|Bx|)]

Now if |Bx ∩By| ≥ d θ ·max(|Bx|, |By|) e, then ∀ t ∈ Bx ∩
By, |Bx(first)∩By(first)| + min(|Bx(second)|, |By(second)|) ≥
d θ ·max(|Bx|, |By|) e

To describe how effective this filtering is, points denoted
by + in Figure 1 show the number of candidate comparisons
after applying this filtering. The reduction is so significant
that empirically on this dataset, the function seems to be
near-linear. This is a massive reduction in comparison with
the quadratic function shown earlier without any filtering.

Although both the filtering heuristics are independent of
each other, they complement each other to effectively reduce
more number of candidate comparisons together than alone.

The index data structure in conjunction with the above
filtering heuristics form the key components of SourcererCC
to achieve scalability. The next section describes the com-
plete algorithm of SourcererCC.

3.4 Clone Detection Algorithm
The algorithm works in two stages: (i) Partial Index Cre-

ation; and (ii) Clone Detection. Each step has filtering
heuristics directly embedded in it as described below.

Partial Index Creation. In traditional index based
approaches, all the tokens are indexed. However, Sourcer-
erCC’s index creation step exploits Property 1 and creates
indexes for tokens only in sub-blocks. We call this Partial
Index. This not only saves space but also enables faster
retrieval because of a smaller index.

Algorithm 1 lists the steps to create a partial index. The
first step is to iterate over each code block b (line 3), and
sort it according to the global token frequency map (GTP )
(line 4). This is done as a pre-requisite to the application of
filtering based on Property 1. Next, the size of sub-block is
computed using formula shown in Property 1 i.e., (t− i+1).
Later, tokens in the sub-block are indexed to create partial
index. (lines 6− 8).

Algorithm 1 SourcererCC’s Algorithm - Partial Index Cre-
ation
INPUT: B is a list of code blocks {b1, b2,...bn} in a project/reposi-
tory, GTP is the global token position map, and θ is the similarity
threshold specified by the user
OUTPUT: Partial Index(I) of B

91: function createPartialIndex(B, θ)
92: I = φ

93: for each code block b in B do

94: b = Sort(b, GTP )

95: tokensToBeIndexed = |b| − d θ ·|b|e+ 1

96: for i = 1 : tokensToBeIndexed do

97: t = b[i]

98: It = It ∪ (t, i)

99: end for

910: end for

911: return I

912: end function

Clone Detection. After partial index is created, the
goal is to detect clones. Algorithm 2 describes the steps in
detail. The detectClones() function iterates over each query
block b, and sorts them using the same (GTP ) that was cre-
ated during index creation (line 4). Again, this is done as a
prerequisite for both Property 1 & 2 to be applicable. After



that, it calculates the length of query sub-block by using the
same formula described in Property 1 (line 5). Next it iter-
ates over only as many tokens as the length of b’s sub-block
and retrieves candidates by querying the partial index. Note
that since partial index is created using only sub-blocks, the
candidates retrieved in this phase implicitly satisfy Property
1. In other words, by creating partial index, the alogrithm
not only reduces the index size, but also ensures that we
only get filtered set of candidates that satisfy Property 1.

After the candidates are retrieved for a given query block,
a trivial optimization to further eliminate candidates is done
using size of the candidates. That is, if a candidate c does
not have enough tokens needed for it to be b’s clone pair,
then there is no point in even comparing them. This is done
using a conditional check |c| > d θ · |b| e on line 8. This
further filters out false positive candidates.

The remaining candidates that have satisfied the above
elimination process are now subjected to the filtering based
on Property 2. First, based on θ, a threshold is computed
that identifies the minimum number of tokens needed to be
matched for b and c to be identified as a clone pair (ct on
line 9). Now, as the tokens in b and c are compared, a the-
oritical upper bound is dynamically computed based on the
number of remaining tokens in b and c (line 10). This up-
per bound indicates the maximum number of tokens b and
c could match assuming all of their tokens will match. If
at any point in the iteration, the sum of upper bound (i.e,
maximum number of tokens b and c could match) and the
current similarity score (i.e, number of tokens b and c have
matched) happens to be less than ct (i.e, minimum number
of tokens b and c need to match), c is eliminated from b’s
candidate map candSimMap (lines 11 and 14). In other
words, it is violation of Property 2. On the other hand, if
the sum is more than ct, the similarity between b and c gets
updated with each token that is matched (line 12). Once
all the tokens in b’s sub-block are exhausted (line 19), we
have a map of candidates (candSimMap) along with their
similarity score and the last seen token in each candidate.
The reason for storing the last seen token will become clear
as we explain futher. The next task is to verify if the can-
didates will eventually end up being b’s clones. This is done
in a call to verifyCandidates() function on line 18.

Candidate Verification. The goal of verifyCandidates()
function is to iterate over candidates c of query b that were
not rejected in detectClones(), compute their similarity score
with b, and reject them if the score does not meet the com-
puted threshold ct) or add them to the cloneMap if it does.

In doing so, an important optimization is seen on (line5).
Note that tokens are not iterated from the start but from last
token seen in b and c because earlier in detectClones() few
tokens of b and c were already iterated to check if they sat-
isfy Property 1 & 2 (lines 6− 8). Hence the function avoids
iterating over those tokens again. It is for this reason, in
detectClones(), candSimMap is designed to not only store
candidates but also the last token that seen in each candi-
date, i.e., (Candidate, TokensSeenInCandidate) pair.

The rest of the function while iterating over the remain-
ing tokens ensures that Property 2 holds at every iteration
(line 6), and then increments the similarity score whenever
there is a token match (lines 7 − 8). If at any iteration,
Property 2 is violated, candidate is eliminated immediately
without iterating over the remaining tokens (line 17). Thus
saving much computation.

Another trivial but important optimization is done while
iterating over code blocks. Since b and c are already sorted
using a global token frequency (GTP), verifyCandidates()
efficienty iterates over b and c by incrementing only the index
of a block that has a lower globally ranked token (lines10−
14). Hence while iterating, except in the worst case when
b & c happen to be clone pairs, time complexity is reduced
from O(|b| ∗ |c|) to O(|b|+ |c|).

Algorithm 2 SourcererCC’s Algorithm - Clone Detection

INPUT: B is a list of code blocks {b1, b2,...bn} in a project/repos-
itory, I is the partial index created from B, and θ is the similarity
threshold specified by the user
OUTPUT: All clone classes (cloneMap)

91: function detectClones(B, I, θ)
92: for each code block b in B do

93: candSimMap = φ

94: b = Sort(b, GTP )

95: querySubBlock = |b| − d θ ·|b|e+ 1

96: for i = 1 : querySubBlock do

97: t = b[i]

98: for each (c, j) ∈ It such that |c| > d θ · |b| e do
99: ct = d max(|c|, |b|) · θ e
910: uBound = 1 +min(|b| − i, |c| − j)
911: if candSimMap[c] + uBound ≥ ct then

912: candSimMap[c] = candSimMap[c] + (1, j)

913: else

914: candSimMap[c] = (0, 0) . eliminate c

915: end if

916: end for

917: end for

918: verifyCandidates(b, candSimMap, ct)

919: end for

920: return cloneMap

921: end function

91: function verifyCandidates(b, candSimMap, ct)
92: for each c ∈ candSimMap such that candSimMap[c] > 0

do
93: tokPosc = Position of last token seen in c

94: tokPosb = Position of last token seen in b

95: while tokPosb < |b| && tokPosc < |c| do

96: if min(|b| − tokPosb, |c| − tokPosc) ≥ ct then

97: if b[tokPosb] == c[tokPosc] then

98: candSimMap[c] = candSimMap[c] + 1

99: else

910: if GTP [b[tokPosb]] < GTP [c[tokPosc]] then

911: tokPosb + +

912: else

913: tokPosc + +

914: end if

915: end if

916: else

917: break

918: end if

919: end while

920: if candSimMap[c] > ct then

921: cloneMap[b] = cloneMap[b] ∪ c
922: end if

923: end for

924: end function

3.5 Detection of Near-miss (Type-3) clones
One of the distinguishing characteristics of SourcererCC

compared to other token-based tools is its ability to detect
Near-miss (Type-3) clones. The bag-of-tokens model plays
an important role in this. Type-3 clones are created by
adding, removing or modifying statements in a duplicated
code fragment. Since the bag-of-tokens model is agnostic to



Table 1: Clone Detection Tool Configurations

Tool Scale/BigCloneBench Mutation Framework

SourcererCC Min length 6 lines, min
similarity 70%, function
granularity.

Min length 15 lines, min
similarity 70%, function
granularity.

CCFinderX Min length 50 tokens, min
token types 12.

Min length 50 tokens, min
token types 12.

Deckard Min length 50 tokens, 85%
similarity, 2 token stride.

Min length 100 tokens,
85% similarity, 4 token
stride.

iClones Min length 50 tokens, min
block 20 tokens.

Min length 100 tokens,
min block 20 tokens.

NiCad Min length 6 lines, blind
identifier normalization,
identifier abstraction, min
70% similarity.

Min length 15 lines, blind
identifier normalization,
identifier abstraction, min
70% similarity.

relative token positions in the code block, it is resilient to
such changes, and hence can detect near-miss clones as long
as the code blocks (bags) share enough tokens to exceed a
given overlap threshold.

Many Type-3 clones have modifications of kind similar
to swapping statement positions in code blocks, combining
multiple condition expressions into one, changing operators
in conditional statements, and use of one language construct
over another (for vs while). While these changes may exhibit
semantic difference, they preserve enough syntactic similar-
ity at a token level to be detected as similar. Detecting such
clones can be difficult for other token-based approaches as
they use token sequences as a unit of match [17]. While
a token-sequence approach could merge nearby cloned se-
quences into Type-3 clones [10], they fail to detect the clones
when the Type-3 gaps are too frequent or large.

4. EVALUATION
In this section we evaluate the execution and detection

performance of SourcererCC. We begin by evaluating its ex-
ecution time and scalability using subject inputs of vary-
ing sizes in terms of lines of code (LOC). We then demon-
strate SourcererCC’s execution for a Big Data inter-project
repository, one of the prime targets of scalable clone detec-
tion. We measure its clone recall using two benchmarks:
The Mutation and Injection Framework [23, 35] and Big-
CloneBench [30, 34]. We measure the precision of our tool
by manually validating a statistically significant sample of
its output for the BigCloneBench experiment.

We compare SourcererCC’s execution and detection per-
formance against four publicly available clone detection tools,
including CCFinderX [17], Deckard [16], iClones [10] and
NiCad [7]. We include CCFinderX as it is a popular and
successful tool, which has been used in many clone studies.
We include Deckard, iClones and NiCad as popular exam-
ples of modern clone detection tools that support Type-3
clone detection. While we have benchmarked a number of
tools in our previous work [33, 34], we focus on those with
the best scalability, recall, and/or most unique performance
aspects for this study. We focus primarily on near-miss clone
detectors, as Type-1 and Type-2 clones are relatively easy to
detect. The configurations of these tools for the experiments
are found in Table 1. These are targeted configurations for
the benchmarks, are based on our extensive previous experi-
ences [33, 34] with the tools, as well as previous discussions
with their developers, where available.

Our primary goal with SourcererCC is to provide a clone
detection tool that scales efficiently for large inter-project

repositories with near-miss Type-3 detection capability. Most
existing state-of-the-art tools have difficulty with such large
inputs, and fail due to scalability limits [31, 32]. Common
limits include untenable execution time, insufficient system
memory, limitations in internal data-structures, or crashing
or reporting an error due to their design not anticipating
such a large input [31, 32]. We consider our tool success-
ful if it can scale to a large inter-project repository with-
out encountering these scalability constraints while main-
taining a clone recall and detection precision comparable to
the state-of-the-art. As our target we use IJaDataset 2.0 [3],
a large inter-project Java repository containing 25,000 open-
source projects (3 million source files, 250MLOC) mined
from SourceForge and Google Code.

4.1 Execution Time and Scalability
In this section we evaluate the execution time and scala-

bility of SourcererCC and compare it to the competing tools.
Execution time primarily scales with the size of the input
in terms of the number of lines of code (LOC) needed to be
processed and searched by the tool. So this is the ideal in-
put property to vary while evaluating execution performance
and scalability. However, it is difficult to find subject sys-
tems that are large enough and conveniently dispersed in
size. Additionally, a tool’s execution time and memory re-
quirements may also be dependent on the clone density, or
other properties of the subject systems. It is difficult to con-
trol for these factors while measuring execution performance
and scalability in terms of input size.

Our solution was to build inputs of varying convenient
sizes by randomly selecting files from IJaDataset. This should
ensure each input has similar clone density, and other prop-
erties that may affect execution time, except for the vary-
ing size in LOC. Each input has the properties of an inter-
project repository, which is a target of large-scale clone de-
tection. We created one input per order of magnitude from
1KLOC to 100MLOC. We built the inputs such that each
larger input contains the files of the smaller inputs. This
ensures that each larger subset is a progression in terms of
execution requirements. Lines of code was measured using
cloc [2], and includes only lines containing code, not com-
ment or blank lines.

The execution time of the tools for these inputs is found
in Table 1. The tools were executed for these inputs using
the configurations listed under “Scale” in Table 2. We lim-
ited the tools to 10GB of memory, a reasonable limit for a
standard workstation. The tools were executed on a ma-
chine with a 3.5GHz quad-core i7 CPU, 12GB of memory,
a solid-state drive, and running Ubuntu 15.04. CCFinderX
was executed on an equivalent machine running Windows
7. We use the same configurations for evaluating recall with
BigCloneBench such that recall, execution performance and
scalability can be directly compared.

Scalability. SourcererCC is able to scale even to the
largest input, with reasonable execution time given the in-
put sizes. CCFinderX is the only competing tool to scale
to 100MLOC, however it only detects Type-1 and Type-2
clones. The competing Type-3 tools encounter scalability
limits before the 100MLOC input. Deckard and iClones run
out of memory at the 100MLOC and 1MLOC inputs, re-
spectively. NiCad is able to scale to the 10MLOC input,
but refuses to execute clone detection on the 100MLOC in-
put. In our previous experience [32], NiCad refuses to run on



Table 2: Execution Time (or Failure Condition) for Varying Input Size

LOC SourcererCC CCFinderX Deckard iClones NiCad

1K 3s 3s 2s 1s 1s
10K 6s 4s 9s 1s 4s
100K 15s 21s 1m 34s 2s 21s
1M 1m 30s 2m 18s 1hr 12m 3s MEMORY 4m 1s
10M 32m 11s 28m 51s MEMORY — 11hr 42m 47s
100M 1d 12h 54m s5s 3d 5hr 49m 11s — — INTERNAL LIMIT

inputs that exceeds its internal data-structure limits, which
prevent executions that will take too long to complete. From
our experiment, it is clear that the state-of-the-art Type-3
tools do not scale to large inputs, whereas SourcererCC can.

Execution Time. For the 1KLOC to 100KLOC inputs,
SourcererCC has comparable execution time to the compet-
ing tools. iClones is the fastest, but it hits scalability issues
(memory) as soon as the 1MLOC input. SourcererCC has
comparable execution time to CCFinderX and NiCad for the
1MLOC input, but is much faster than Deckard. Sourcer-
erCC has comparable execution time to CCFinderX for the
10MLOC input size, but is much faster than NiCad. For the
largest input size, SourcererCC is twice as fast as CCFind-
erX, although their execution times fall within the same or-
der of magnitude. Before the 100MLOC input, SourcererCC
and CCFinderX have comparable execution times.

SourcererCC is able to scale to inputs of at least 100MLOC.
Its execution time is comparable or better than the compet-
ing tools. Of the examined tools, it is the only state-of-
the-art Type-3 clone detector able to scale to 100MLOC.
While CCFinderX can scale to 100MLOC for only detecting
Type-1 and Type-2 clones, SourcererCC completes in half
the execution time while also detecting Type-3 clones.

4.2 Experiment with Big IJaDataset
Since SourcererCC scaled to 100MLOC without issue, we

also executed for the entire IJaDataset (250MLOC). This
represents the real use case of clone detection in a Big Data
inter-project software repository. We execute the tool on
a standard workstation with a quad-core i7 CPU, 12GB of
memory and solid state drive. We restricted the tool to
10GB of memory and 100GB of SSD disk space. We ex-
ecuted SourcererCC using the “Scale” configuration in Ta-
ble 1, with the exception of increasing the minimum clone
size to ten lines. Six lines is common in benchmarking [4].
However, a six line minimum may cause an excessive num-
ber of clones to be detected in IJaDataset, and processing
these clones for a research task can become another difficult
scalability challenge [31]. Additionally, larger clones may be
more interesting since they capture a larger piece of logic,
while smaller clones may be more spurious.

SourcererCC successfully completed its execution for IJa-
Dataset in 4 days and 12 hours, detecting a total of 146
million clone pairs. The majority of this time was clone de-
tection. Extracting and tokenizing the functions required
3.5 hours, while computing the global token freqeuncy map
and tokenizing the blocks required only 20 minutes. Sourcer-
erCC required 8GB of disk space for its pre-processing, index
(1.2GB) and output. Of the 4.7 million functions in IJa-
Dataset greater than 10 lines in length, 2.4 million (51%)
appeared in at least one clone pair detected by Sourcer-
erCC. We have demonstrated that SourcererCC scales to
large inter-project repositories on a single machine with good
execution time. We have also shown that building an index
is an inexpensive way to scale clone detection and reduce

overall execution time.
Since CCFinderX scales to the 100MLOC sample, we also

executed it for IJaDataset. We used the same settings as
the scalability experiment. We did not increase CCFind-
erX’s minimum clone size from 50 tokens, which is roughly
10 lines (assuming 5 tokens per line). This was not an is-
sue with benchmarking as we used a 50 token minimum
for reference clones from BigCloneBench. CCFinderX ex-
ecuted for 2 days before crashing due to insufficient disk
space. Its pre-processed source files (25GB) and temporar-
ily disk space usage (65GB) exceeded the 100GB reserved
space. Based on the findings of a previous study, where
CCFinder was distributed over a cluster of computers [21],
we can estimate it would require 10s of days to complete de-
tection on 250MLOC, given sufficiently large disk-space. So
we can confidently say that SourcererCC is able to complete
sooner, while also detecting Type-3 clones.

4.3 Recall
In this section we measure the recall of SourcererCC and

the competing tools. Recall has been very difficult for tool
developers to measure as it requires knowledge of the clones
that exist in a software system [25, 24]. Manually inspecting
a system for clones is non-trivial. Even a small system like
Cook, when considering only function clones, has almost a
million function pairs to inspect [37]. Bellon et al. [4] cre-
ated a benchmark by validating clones reported by the clone
detectors themselves. This has been shown to be unreliable
for modern clone detectors [33]. Updating this benchmark
to evaluate your tool would require extensive manual clone
validation with a number of modern tools. As such, many
clone detection tool papers simply do not report recall.

In response we created The Mutation and Injection Frame-
work [23, 35], a synthetic benchmark that evaluates a tool’s
recall for thousands of fine-grained artificial clones in a mutation-
analysis procedure. The framework is fully automatic, and
requires no validation efforts by the tool developer. How-
ever, we recognized that a modern benchmark of real clones
is also required. So we developed an efficient clone vali-
dation strategy based on code functionality and built Big-
CloneBench [30], a Big Data clone benchmark containing
8 million validated clones within and between 25,000 open-
source projects. It measures recall for an extensive variety
of real clones produced by real developers. The benchmark
was designed to support the emerging large-scale clone de-
tection tools, which previously lacked a benchmark. This
combination of real-world and synthetic benchmarking pro-
vides a comprehensive view of SourcererCC’s clone recall.

4.3.1 Recall Measured by The Mutation Framework
The Mutation Framework evaluates recall using a stan-

dard mutation-analysis procedure. It starts with a ran-
domly selected real code fragment (a function or a code
block). It mutates this code fragment using one of fifteen
clone-producing mutation operators. Each mutation oper-



Table 3: Mutation Framework Recall Results

Tool
Java C C#

T1 T2 T3 T1 T2 T3 T1 T2 T3

SourcererCC 100 100 100 100 100 100 100 100 100

CCFinderX 99 70 0 100 77 0 100 78 0
Deckard 39 39 37 73 72 69 - - -
iClones 100 92 96 99 96 99 - - -
NiCad 100 100 100 99 99 99 98 98 98

ator performs a single code edit corresponding to one of
the first three clone types, and are based on an empirically
validated taxonomy of the types of edits developers make
on copy and pasted code. This artificial clone is randomly
injected into a copy of a subject system. The clone detec-
tor is executed for this system, and its recall measured for
the injected clone. The framework requires the tool to not
only sufficiently report the injected clone, but appropriately
handle the clone-type specific change introduced by the mu-
tation operator. As per mutation-analysis, this is repeated
thousands of times. Further details, including a list of the
mutation operators, is available in our earlier studies [23,
27, 35].

Procedure. We executed the framework for three pro-
gramming languages: Java, C and C#, using the following
configuration. For each language, we set the framework to
generate clones using 250 randomly selected functions, 10
randomly selected injection locations, and the 15 mutation
operators, for a total of 37,500 unique clones per language
(112,500 total). For Java we used JDK6 and Apache Com-
mons as our source repository and IPScanner as our subject
system. For C we used the Linux Kernel as our repository
and Monit as our subject system. For C# we use Mono
and MonoDevelop as our repository, and MonoOSC as our
subject system. We constrained the synthesized clones to
the following properties: (1) 15-200 lines in length, (2) 100-
2000 tokens in length, and (3) a mutation containment of
15%. We have found this configuration provides accurate
recall measurement [33, 34]. The tools were executed and
evaluated automatically by the framework using the config-
urations listed in Table 1. To successfully detect a reference
(injected) clone, a tool must report a candidate clone that
subsumes 70% of the reference clone by line, and appropri-
ately handles the clone-type specific edit introduced by the
mutation operator [35].

Results. Recall measured by the Mutation Framework
for SourcererCC and the competing tools is summarized in
Table 3. Due to space considerations, we do not show recall
per mutation operator. Instead we summarize recall per
clone type. SourcererCC has perfect recall for first three
clone types, including the most difficult Type-3 clones, for
Java, C and C#. This tells us that it’s clone detection algo-
rithm is capable of handling all the types of edits developers
make on copy and pasted code for these languages, as out-
lined in the editing taxonomy for cloning [27].

SourcererCC exceeds the competing tools with the Muta-
tion Framework. The runner up is NiCad, which has perfect
recall for Java, and near-perfect recall for C and C#. iClones
is also competitive with SourcererCC, although iClones has
some troubles with a small number of Type-2 and Type-3
clones. SourcererCC performs much better for Type-2 and
Type-3 clones than CCFinderX. Of course, as a Type-2 tool,
CCFinderX does not support Type-3 detection. Sourcer-
erCC performs much better then Deckard across all clone

Table 4: BigCloneBench Clone Summary

Clone Type T1 T2 VST3 ST3 MT3 WT3/T4

# of Clone Pairs 35787 4573 4156 14997 79756 7729291

types. While Deckard has decent recall for the C clones, its
Java recall is very poor. We believe this is due to its older
Java parser (Java-1.4 only), while the Java reference clones
may contain up to Java-1.6 features.

In summary, SourcererCC has perfect recall with the Mu-
tation Framework, which shows it can handle all the types
of edits developers make on cloned code. As per standard
mutation analysis, the Mutation Framework only uses one
mutation operator per clone. This allows it to measure re-
call very precisely per type of edit and clone type. It also
prevents the code from diverging too far away from nat-
ural programming. However, this means that the Muta-
tion Framework makes simple clones. It does not produce
complex clones with multiple type of edits, and the Type-3
clones it produces generally have a higher degree of syntacti-
cal similarity. To overcome this issue, we use the real-world
benchmark BigCloneBench as follows.

4.3.2 Recall Measured by BigCloneBench
Here we measure the recall of SourcererCC using Big-

CloneBench and compare it to the competing tools. We eval-
uate how its capabilities shown by the Mutation Framework
translate to recall for real clones produced by real developers
in real software-systems, spanning the entire range of clone
types and syntactical similarity. Together the benchmarks
provide a complete view of SourcererCC’s recall.

BigCloneBench [30] is a Big Data clone benchmark of
manually validated clone pairs in the inter-project software
repository IJaDataset 2.0 [3]. IJaDataset consists of 25,000
open-source Java systems spanning 3 million files and 250MLOC.
This benchmark was built by mining IJaDataset for func-
tions implementing particular functionalities. Each clone
pair is semantically similar (by their target functionality)
and is one of the four primary clone types (by their syntacti-
cal similarity). The published version of the benchmark con-
siders 10 target functionalities [30]. We use an in-progress
snapshot of the benchmark with 48 target functionalities,
and 8 million validated clone pairs, for this study.

For this experiment, we consider all clones in BigCloneBench
that are 6 lines or 50 tokens in length or greater. This is
a standard minimum clone size for benchmarking [4, 34].
The number of clones in BigCloneBench, given this size con-
straint, is summarized per clone type in Table 4. There is no
agreement on when a clone is no longer syntactically sim-
ilar, so it is difficult to separate the Type-3 and Type-4
clones in BigCloneBench. Instead we divide the Type-3 and
Type-4 clones into four categories based on their syntactical
similarity, as follows. Very Strongly Type-3 (VST3) clones
have a syntactical similarity between 90% (inclusive) and
100% (exclusive), Strongly Type-3 (ST3) in 70-90%, Moder-
ately Type-3 (MT3) in 50-70% and Weakly Type-3/Type-4
(WT3/4) in 0-50%. Syntactical similarity is measured by
line and by token after Type-1 and Type-2 normalizations.
We use the smaller of the measurements for categorization.
The categories, and the benchmark in general, are explained
in more detail elsewhere [30].

Procedure. We executed the tools for IJaDataset and
evaluated their recall with BigCloneBench. As we saw pre-
viously (Section 4.1), most tools do not scale to the order



of magnitude of IJaDataset (250MLOC). Our goal here is
to measure recall not scalability. We avoid the scalability
issue by executing the tools for a reduction of IJaDataset
with only those files containing the known true and false
clones in BigCloneBench (50,532 files, 10MLOC). Some of
the competing tools have difficulty even with the reduction,
in which case we partition it into small sets, and execute
the tool for each pair of partitions. In either case, the tool is
exposed to every reference clone in BigCloneBench, and it is
also exposed to a number of false positives as well, creating
a realistic input. We measure recall using a subsume-based
clone-matching algorithm with a 70% threshold. A tool suc-
cessfully detects a reference clone if it reports a candidate
clone that subsumes 70% of the reference clone by line. This
is the same algorithm we use with the Mutation Framework,
and is a standard in benchmarking [4].

Results. Recall measured by BigCloneBench is summa-
rized in Table 5. It is is summarized per clone type and per
Type-3/4 category for all clones, as well as specifically for
the intra and inter-project clones.

SourcererCC has perfect detection of the Type-1 clones in
BigCloneBench. It also has near-perfect Type-2 detection,
with negligible difference between intra and inter-project.
This shows that the 70% threshold is sufficient to detect
the Type-2 clones in practice. SourcererCC has excellent
Type-3 recall for the VST3 category, both in the general
case (93%) and for intra-project clones (99%). The VST3
recall is still good for the inter-project clones (86%), but
it is a little weaker. SourcererCC’s Type-3 recall begins
to drop off for the ST3 recall (61%). Its recall is good in
this Type-3 category for the intra-project clones (86%) but
poor for the inter-project clones (48%). We believe this is
due to Type-3 clones from different systems having higher
incidence of Type-2 differences, so the inter-project clones
in the ST3 category are not exceeding SourcererCC’s 70%
threshold. Remember that the reference clone categorization
is done using syntactical similarity measured after Type-
2 normalizations, whereas SourcererCC does not normalize
the identifier token names (to maintain precision and index
efficiency). Lowering SourcererCC’s threshold would allow
these to be detected, but could harm precision. SourcererCC
has poor recall for the MT3 and WT3/T4, which is expected
as these clones fall outside the range of syntactical clone
detectors [34]. Of course, Type-4 detection is outside the
scope of this study.

Compared to the competing tools, SourcererCC has the
second best recall overall, with NiCad taking the lead. Both
tools have perfect Type-1 recall, and they have similar Type-
2 recall, with NiCad taking a small lead. SourcererCC has
competitive VST3 recall, but loses out in the inter-project
case to NiCad. SourcererCC is competitive with NiCad for
intra-project clones in the ST3 category, but falls signifi-
cantly behind for the inter-project case and overall. NiCad
owes its exceptional Type-3 recall to its powerful source nor-
malization capabilities. However, as we saw previously in
Section 4.1, NiCad has much poorer execution time for larger
inputs, and hits scalability constrains at the 100MLOC in-
put. So SourcererCC instead competes with execution per-
formance and scalability, making these tools complimentary
tools for different use-cases.

Comparison to CCFinderX is interesting as it is the only
other tool to scale to the 100MLOC input. Both tools
have comparable Type-1 and Type-2 recall, with Sourcer-

erCC having the advantage of also detecting Type-3 clones,
the most difficult type. While BigCloneBench is measur-
ing a non-negligible VST3 recall for CCFinderX, it is not
truly detecting the Type-3 clones. As shown by the Mu-
tation Framework in Table 3, CCFinderX has no recall for
clones with Type-3 edits, while SourcererCC has perfect re-
call. Rather, CCFinderX is detecting significant Type-1/2
regions in these (very-strongly similar) Type-3 clones that
satisfy the 70% coverage threshold. This is a known limita-
tion in real-world benchmarking [33, 34], which is why both
real-world and synthetic benchmarking is needed. CCFind-
erX’s detection of these regions in the VST3 is not as use-
ful to users as they need to manually recognize the missing
Type-3 features. CCFinderX’s Type-3 recall drops off past
the VST3 category, where Type-3 gaps are more frequent
in the clones. While we showed previously that CCFind-
erX also scales to larger inputs (Section 4.1), SourcererCC’s
faster execution, Type-3 support and better recall make it
an ideal choice for large-scale clone detection.

Deckard and iClones are the other competing Type-3 clone
detectors. Both SourcererCC and iClones have perfect Type-
1 recall, but SourcererCC exceeds iClones in both Type-
2 and Type-3 detection, and iClones does not scale well.
Deckard has poor overall recall for all clone types, along
with its scalability issues.

4.4 Precision
We measure SourcererCC’s precision by manually validat-

ing a sample of its output. We validate clones it detected for
the BigCloneBench recall experiment so that the recall and
precision measurements can be directly compared. For the
BigCloneBench input, SourcererCC detected 2 million clone
pairs. We randomly selected 390 of these clone pairs for
manual inspection. This is a statistically significant sample
with a 95% confidence level and a ±5% confidence interval.
We split the validation efforts across three clone experts.
This prevents any one judge’s personal subjectivity from in-
fluencing the entire measurement. The judges found 355 to
be true positives, and 35 to be false positives, for a pre-
cision of 91%. This is a very strong precision as per the
literature [24, 27, 25], and demonstrates the accuracy and
trustworthiness of SourcererCC’s output.

The three judges made a common observation regarding
the false positives. These were cases where code fragments
were syntactically similar, but not clones. For example, un-
related but similar usage of a common API. The false posi-
tives were not caused by a fault in SourcererCC, rather dif-
ferentiating these instances from true clones is outside the
scope of syntax-based clone detection. We do not believe
other syntax-based clone detectors would perform signifi-
cantly differently. In particular, a number of false positives
were syntactically very similar unit test methods which were
testing different behaviors of a class, but were both essen-
tially a sequence of similar assertions.

Since the precision of the competing tools is publicly avail-
able (either by the tool authors and/or other experiments),
and we wanted to give the maximum credit to them, we
used those precision values for the comparison purpose. For
Deckard, a highest precision of 93% was measured [16] us-
ing a higher similarity threshold. However, Deckard’s recall
might be significantly lower in the setting of our study where
we target Type-3 clones with an 85% threshold. The pre-
cision of CCFinder has been measured in two studies, and



Table 5: BigCloneBench Recall Measurements

Tool
All Clones Intra-Project Clones Inter-Project Clones

T1 T2 VST3 ST3 MT3 WT3/T4 T1 T2 VST3 ST3 MT3 WT3/T4 T1 T2 VST3 ST3 MT3 WT3/T4

SorcererCC 100 98 93 61 5 0 100 99 99 86 14 0 100 97 86 48 5 0

CCFinderX 100 93 62 15 1 0 100 89 70 10 4 1 98 94 53 1 1 0
Deckard 60 58 62 31 12 1 59 60 76 31 12 1 64 58 46 30 12 1
iClones 100 82 82 24 0 0 100 57 84 33 2 0 100 86 78 20 0 0
NiCad 100 100 100 95 1 0 100 100 100 99 6 0 100 100 100 93 1 0

found to be 60-72% [5, 4]. In general, token-based tools have
lower precision [11, 4]. This is caused by Type-2 normal-
izations, which causes false positives to have identical nor-
malized token sequences. Like CCFinder, iClones has poor
precision due to the normalizations [4, 11]. A study using
artificial clones found a precision of 89-96% for NiCad, de-
pending on the configurations [23, 35]. However, NiCad also
exploits Type 2 normalizations including other advanced
source transformations and the precision could drop signifi-
cantly (e.g., around 60%), depending on the configuration.

Compared to the competing tools, our tool has very strong
precision at 91%. Unlike the competing token-based tools,
we do not consider sequences of tokens, but rather the over-
lap of tokens on code blocks. We do not normalize identifier
names, so we are able to maintain a high precision. Our re-
call results show that our overlap metric and threshold are
able to provide high Type-2 and Type-3 recall without the
identifier normalizations.

5. THREATS OF VALIDITY
As observed by Wang et al. [38], clone detection studies

are affected by the configurations of the tools, and Sourcer-
erCC is no exception. However, we carefully experimented
with its configurations to achieve an optimal result. As for
the other tools, we also conducted test experiments, and
also discussed with the corresponding developers for obtain-
ing proper configurations, where available. Their configu-
rations also provided good results in our past studies [34,
33, 31]. The measurement of precision is strongly affected
by the personal subjectivity of the judge. To combat this,
we split the validation efforts across three clone experts so
that the measurement reflects the views of multiple clone
researchers. For the same reason, for the competing tools,
we compared with their published precision values (either by
their tool authors and/or comparison experiments) instead
of measuring them.

6. RELATED WORK
Code clone detection is a mature area of study, and a num-

ber of detection techniques and tools have been presented in
the literature. Rattan et al. [22] found at least 70 clone de-
tectors in the literature, almost double the 40 found by Roy
et al. [27] in 2009. However, very few tools target scala-
bility to very large repositories. In Section 4, we compared
SourcererCC with four state-of-the-art tools that were found
to be competitive in previous studies [33, 34], and thus we
do not discuss them further here.

Liveri et al. [21] introduced a method of distributing an
existing non-scalable tool to very large inputs. They par-
tition the input into subsets small enough to be executed
on a single machine, and execute the tool for each pair of
partitions. Partitioning achieved scalability in execution re-
source requirements, while scalability in time is achieved by

distribution of the executions over a large number of ma-
chines. Svajlenko et al. [31] uses a similar methodology to
scale the existing clone detectors. Instead, the smaller in-
puts are chosen using a non-deterministic shuffling heuristic,
which reduces the number of required tool executions signif-
icantly at the cost of some reduction in recall. Distribution
of these executions over a small number of machines is still
recommended for scalability in time. In contrast, Sourcer-
erCC uses a novel scalable clone detection technique, and is
capable of scaling to large repositories on a single machine.

Ishihara et al. [15] use hashing to scale method-clone de-
tection for the purpose of identifying candidates for build-
ing libraries. They use an AST-based parser to extract the
methods and normalize their Type-1 and Type-2 features
before producing a MD5 hash of their text. Methods with
the same hash-value are clustered into clone classes. While
they achieve fast execution time, their methodology does not
detect Type-3 clones, which are the most common in large
inter-project repositories [30].

Hummel et al. [14] were the first to use an index-based ap-
proach to scale clone detection to large inter-project reposi-
tories. Their technique detects only the Type-1 and Type-2
clones. Their technique produces a very large index, so the
index and the computation must be distributed using Google
MapReduce. In contrast, our SourcererCC produces a very
small index, just 1.2GB for 18GB (250MLOC) of code, and
detects Type-3 clones in large inter-project repository using
a single machine.

Others have scaled clone detection in domain-specific ways,
and are not directly related to ours. Koshke [20] used suffix
trees to scale license violation detection between a subject
system and a large inter-project repository. Keivanloo et
al. [19] use an index approach to scale clone search to large
inter-project repositories. Chen et al. [6] implement a tech-
nique for detecting cloned Android applications across large
application markets.

7. CONCLUSION
In this paper, we introduced SourcererCC, a token-based

accurate near-miss clone detection tool, that uses an opti-
mized partial index and filtering heuristics to achieve large-
scale clone detection on a standard workstation. We demon-
strated SourcererCC’s scalability with IJaDataset, a Big Data
inter-project repository containing 25,000 open-source Java
systems, and 250MLOC. We measure its recall using two
state-of-the-art clone benchmarks, the Mutation Framework
and BigCloneBench. We find that SourcererCC is competi-
tive with even the best of the state-of-the-art Type-3 clone
detectors. We manually inspected a statistically significant
sample of SourcererCC’s output, and found it to also have
strong precision. We believe that SourcererCC can be an ex-
cellent tool for the various modern use-cases that require re-
liable, complete, fast and scalable clone detection. Sourcer-



erCC is available on our website 6.
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