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Abstract

Research on API migration and language conversion can be
informed by empirical data about API usage. For instance, such
data may help with designing and defending mapping rules for
API migration in terms of relevance and applicability. We de-
scribe an approach to large-scale API-usage analysis of open-
source Java projects, which we also instantiate for the Source-
Forge open-source repository in a certain way. QOur approach
covers checkout, building, tagging with metadata, fact extraction,
analysis, and synthesis with a large degree of automation. Fact ex-
traction relies on resolved (type-checked) ASTs. We describe a few
examples of API-usage analysis; they are motivated by API mi-
gration. These examples are concerned with analysing API foot-
print (such as the numbers of distinct APIs used in a project), API
coverage (such as the percentage of methods of an API used in a
corpus), and framework-like vs. class-library-like usage.

1. Introduction

The broader context of the reported research is API' migra-
tion [3, 24, 36, 2] (but also language conversion [17, 29, 22] to the
extent that it involves API migration). Given a programming do-
main, and given a couple of different APIs for that domain, it can
be challenging to devise transformations or wrappers for migra-
tion from one API to the other. The APIs may differ with regard
to types, methods, contracts, and protocols so that actual API mi-
gration efforts must compromise with regard to automation and
correctness [3, 2].

Several researchers, including ourselves, are working towards
general techniques for reliable and scalable API migration. Be-
cause of the complexity of transformations and wrappers for mi-
gration as well as the difficulty of proving them correct, it is also

'In this paper, we use the term API to refer both to a public pro-
gramming interface and its actual implementation as a software
library for reuse.
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advisable to leverage diverse knowledge about actual API usage.

In the present paper, we describe an approach to large-scale
API-usage analysis for the analysis of open-source Java projects.
Our approach covers checkout, building, tagging with metadata,
fact extraction, analysis, and synthesis with a large degree of au-
tomation. We describe a few examples of API-usage analysis; they
are motivated by API migration. Overall, API-usage analysis helps
with designing and defending mapping rules for API migration in
terms of relevance and applicability.

While API migration remains the primary motivation for our
efforts on API-usage analysis, we must say that the work reported
in this paper has meanwhile grown into an effort of its own right:
this kind of supported API-usage analysis also caters for under-
standing simple structural properties of Java software (such as the
number of APIs used in open-source projects) and fundamental
API characteristics (such as class library-like vs. framework-like
API usage). In this sense, it supports potential empirical work on
language usage in the line of Baxter et al.’s “Understanding the
shape of Java software” [4].

Contributions of the paper
o We work out a few examples of API-usage analysis: (i) API-
footprint analysis for projects; (ii) API-coverage analysis for
the corpus; (iii) analysis of framework-like API usage. We
discuss how such analyses inform API-migration efforts.

e We describe a process for obtaining a large corpus of built
Java projects and involved Java APIs from an open-source
repository in a scalable manner. Fact extraction uses precise,
resolved (type-checked) ASTs.

Practical results and online access

In the Software Languages Lab at Koblenz, we are working on
different aspects of API-usage analysis and several implementa-
tions. In this paper, we report on an infrastructure that we applied
to SourceForge. All empirical data in this paper is based on this
implementation. All figures and tables from the present paper as
well as additional data material have been made available online.?

Road-map of the paper

§2 provides an overview of the approach to API-usage analysis. §3
instantiates the approach for the SourceForge open-source repos-
itory in a certain way. §4 describes some examples of API-usage
analysis, and exercises them for the SourceForge-based corpus. §5
discusses major threats to validity. §6 discusses related work. §7
concludes the paper.

2F‘aper's web site incl. all support material:
http://softlang.uni-koblenz.de/sourceforge/
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2. Overview of the approach

API-usage analysis relies on methods and techniques that are
commonly used in reverse engineering and program understand-
ing. In particular, we need to set up a corpus of software projects to
be used for data mining; we also need to provide a fact-extraction
machinery to build a database of program facts. Additionally, we
need to add metadata about APIs—as we operate in the domain of
the programming domains and their APIs. Any specific form of
API-usage analysis is then to be implemented through queries on
the fact base (database) that is obtained in this manner.

2.1 Setting up the corpus

The objectives of a specific effort on API-usage analysis should
obviously affect the provision of a corpus. In our work, so far, we
have been mainly interested in extracting evidence (facts) about
API usage from as many projects as possible. While corpora of
dozens of well chosen projects (such as the one of [4]) are well
suited for many data mining purposes (e.g., for the analysis of
simple structural properties (metrics) of Java software), they are
potentially limited with regard to API features that they exercise.
For this reason, we are interested in large-scale efforts where API-
usage data is systematically mined from open-source repositories.
In principle, one could still include specific ‘well-known’ projects
manually into the resulting corpus, if this is desired.

2.2 Provision of a fact extractor

We need to be able to reliably link facts of API usage to the
actual APIs and their types, methods, etc. Hence, fact extraction
must be syntax- and type-aware. (For instance, the receiver type
in a method call must be known in order to associated calls with
API methods.) We use fact extraction based on resolved ASTs.
However, this choice basically implies that we only consider built
(‘buildable’) projects, which may result in a bias. Therefore, we
also incorporate an additional token-based (as opposed to AST-
based) fact extractor into the architecture so that some more basic
analyses are still feasible.

2.3 Addition of API metadata

Along with building many projects, one encounters many APIs.
In the case of the Java platform, there are Core Java APIs and
third-party APIs. Based on package and types names, one can
identify these APIs, and assign names. For instance, certain types
in the package java.util account for the ‘Core Java API for
collections’. One can also associate programming domains with
APIs: GUI, XML, Testing, etc.

Third-party APIs reveal themselves in the process in two prin-
ciple ways. First, projects may fail to build with ‘class not found’
errors, which are to be manually resolved by supplying (and tag-
ging) the corresponding APIs through web search and download.
Second, the corpus can also be analyzed for cross-project reuse.
That is, one can automatically identify API candidates by querying
for packages whose methods were called (and potentially declared
and compiled) in at least two projects.

3. A study of SourceForge

We will now describe the instantiation of the above approach
for the study of the present paper.

3.1 Project selection

Based on available metadata for all SourceForge projects, we
determined the list of potential Java projects. In the present study,
as a concession to scalability and simplicity of our implemen-
tation, we only downloaded projects with a SourceForge-hosted
SVN source repository, and we only considered Java projects with
Ant-based build management. (We discuss all threats to validity
in §5.) We used a homegrown architecture for parallel checkout
and building. The selected SourceForge projects were fetched in
October 2008.

3.2 Resolution of missing API packages

Obviously, SourceForge projects may fail to build for diverse
reasons: wrong platform, missing configuration, missing JARs,
etc. We wanted to bring up the number of buildable projects with
little effort. We addressed one particular reason: ‘class not found’
compilation errors. To this end, our build machinery compiles a
summary of unresolved class names (package names) for a full
build sweep over all projects. This summary ranks package names
by frequency of causing ‘class not found’ errors so that the man-
ual effort for supplying missing APIs can be prioritized accord-
ingly. We searched the web for API JARs using unresolved pack-
age names as search strings. We downloaded these JARs, added
them to the build path, and ran the automated build again. We re-
peated this step until the top of the list of missing packages would
contain packages referenced only by 1-2 projects. This process
provided us with 1,476 built projects, where approx. 15 % of these
projects were made buildable by our resolution efforts. In the end,
we were able to build 90.05 % of all downloaded SourceForge
projects that satisfied our initial criteria (Java, SVN, ANT). The
process resulted in an API pool of 69 non-Core Java APIs.

3.3 Fact extraction

We carried out resolved AST-based fact extraction by means of
a compiler plug-in for javac, which is activated transparently as
projects are built. In this study, we extracted facts about method
declarations, method calls, and subtype relationships. In this pa-
per, we interpret the term method to include instance methods,
static methods and constructors. All facts were stored in a rela-
tional database using a trivial relational schema.

We only used AST-based facts from projects with successful
builds. For all projects, we performed token-based fact extraction
to count NCLOC (non-comment lines of code) for Java sources
and to determine all package names from imports. The importing
facts give an indication of, for example, the APIs that are used in
projects that do not build.

3.4 Reference projects

‘We made an effort to identify a control group of (buildable) ref-
erence projects that could be said to represent well thought-out, ac-
tively developed and usable software. Such a control group allows
us to check all trends of the analyses for the full corpus by com-
parison with the more trusted reference projects. Several charts
in this paper show all projects vs. reference projects for compari-
son. We automatically identified the reference projects by means
of SourceForge’s metadata about maturity status of the project,
number of commits, and dates of first and last commits. That is,
we selected projects that rate themselves as ‘mature’ or ‘stable’,
have a repository created more than two years ago, and have more
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than 100 commits to the repository. This selection resulted in 60
reference projects out of all the 1,476 built projects.

3.5 Size metrics for the corpus

Numbers of projects and their NCLOC sizes, and other metrics
are summarized in Table 1 and Table 2. We use the metric MC for
the number of method calls.

Metric Value
Projects 6,286
Source files 2,121,688
LOC 377,640,164
NCLOC 264,536,500
Import statements | 14,335,066

Table 1. Summary of token-based analysis (with all auto-
matically identified Java/SVN projects on SourceForge).

Metric Value
Projects with attempted builds | 1,639
Built projects 1,476
Packages 46,145
Classes 198,948
Methods 1,397,099
Method calls 8,163,083

Table 2. Summary of AST-based analysis.
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Figure 1. Size metrics (NCLOC, MC) for built and un-
built projects (thinned out). The projects are ordered by the
values for the NCLOC metric.

Figure 1 presents the distribution of size metrics (NCLOC,
MC) for the corpus (y-axis is normalized w.r.t. the maximum of
the metric in each group). As one can see, both metrics correlate
reasonably. The maximum of NCLOC in the whole corpus (incl.
unbuilt projects) is 25,515,312, the maximum of NCLOC among
built projects is 1,985,977, which implies a factor 12.85 differ-
ence. Hence, we are missing the biggest projects currently. The
maximum of MC among built projects is 228,242.

3

2 £3

£ 35, 2 Z%

Java Collections | Collections | yes | 1374 | 392639 | 406

AWT GUI yes | 754 | 360903 | 1607

Swing GUI yes | 716 | 581363 | 3369
Reflection Other yes | 560 15611 154
Core XML XML yes | 413 90415 537
DOM XML yes | 324 | 52593 180
SAX XML no | 310 | 13725 156
logdj Logging no | 254 | 43533 187

JUnit Testing no | 233 71481 1011
Comm.Logging | Logging no | 151 21996 | 88

Table 3. Top 10 of the known APIs (sorted by the number
of projects using an API).

3.6 Provision of API metadata

Both Core Java APIs and manually downloaded JARs were
processed by us to assign metadata: name of the API, the name
of a programming domain, one or more package prefixes, and po-
tentially a white-list of API types. Table 3 lists the top 10 of all
the 77 manually tagged APIs together with some metadata and
metrics. We used a special reflection-based fact extractor for the
visible types and members of the API JARs. (Alternatively, one
could also attempt to leverage API documentation, but such docu-
mentation may not be available for some of the APIs, and it would
take extra effort to establish consistency between JARs and docu-
mentation.) These facts are also stored in the database, and they
are leveraged by some forms of API-usage analysis.

4. Examples of API-usage analysis

We will introduce a few examples of API-usage analysis. In
each case, we will provide a motivation related to API migra-
tion and language conversion—before we apply the analysis to our
SourceForge corpus.

Admittedly, the statistical analysis of a corpus does not directly
help with any specific migration project. However, the reported
analyses as such are meaningful for single projects, too (perhaps
subject to refinements). For instance, we will discuss API cov-
erage below, and such information, when obtained for a specific
project, directly helps prioritizing migration efforts. In this paper,
which presents early research, we take a statistical view on the
corpus to indicate the de-facto range for some of the measures of
interest.

4.1 API footprint per project

We begin with a very simple, nevertheless informative API-
usage analysis for the footprint of API usage. There are different
dimensions of footprint. Below, we consider the numbers of used
APIs and used (distinct) API methods. In the online appendix, we
also consider the ratio of API calls to all calls. In extension of these
numbers, we could also be interested in the ‘reference projects x
API pool” matrix (showing for each project the combination of
APIs that it uses).
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The APIs or API methods used in a project provide insight into
the API-related complexity of the project. In fact, such footprint-
like data serves as a proxy for the API dependence or platform de-
pendence of a project. In [16], we mention such API dependence
as a form of software asbestos. In the following, we simply count
the number of APIs used in a project as a proxy for the difficulty of
API migration. Ultimately, a more refined analysis is needed such
that specific (known to be difficult) API combinations are counted,
and attention is payed to the status of whether these API combos
are really exercised in one program scope or only separately.

In this context, we need to define what constitutes usage of
an APIL. One option would be to count each method call with an
API’s type as static receiver type (in the case of an instance call),
or as the hosting scope (in the case of a static call), or as the con-
structed type (in the case of a constructor call). Another option
is to count any sort of reference to an API’s types (including the
aforementioned positions of API types in method calls, but count-
ing additionally local variable declarations or argument positions
of method declarations and method calls). Yet another option is
to consider simply imports in a project. The latter option has the
advantage that we can measure such imports very easily—even
for unbuilt projects. Indeed, the following numbers were obtained
by counting imports that were obtained with the token-based fact
extractor.
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Unbuilt 1 2 4 4.409 6 27
Built 1 3 4 4.692 6 23
Reference 1 4 6 6.937 8 20

Figure 2. Numbers of known APIs used in the projects;
reference projects are plotted on top of built projects which
in turn are plotted on top of unbuilt projects.

Figure 2 shows the number of known APIs (y-axis) that are
used in the projects ordered by NCLOC-based project size (x-
axis). Unbuilt, built, and reference projects are distinguished. The
listed maxima and quartiles give a sense of the API footprint in
projects in the wild. The set of unbuilt projects exercises a higher
maximum of used APIs than the set of built projects—potentially
because of a correlation between the complexity of projects in
terms of the number of involved APIs and the difficulty to build
those projects.

We also need to clarify how to measure usage of API meth-

ods. That is, how to precisely distinguish distinct methods so that
counting uses is well defined. Particularly, in the case of instance
method calls, the situation is complicated due to inheritance, over-
riding, and polymorphism. As a starting point, we may distinguish
methods by possible receiver type—no matter whether the method
is overridden or inherited at a given subtype. Then, a method call
is counted towards the static receiver type in a call. Addition-
ally, we may also count the call towards subtypes (subject to a
polymorphism-based argument: the runtime receiver type may be
a subtype) and supertypes (subject to an inheritance-based argu-
ment: the inherited implementation may be used, if not inherited).
Such inclusion could also be made more precise by a global pro-
gram analysis.
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Projects Min | 1stQ | Median | Mean | 3rd Q | Max
All 1 94 199.5 370.7 | 423 10850
Reference | 20 305.8 | 611 866.2 | 948.8 5351

Figure 3. Numbers of distinct API methods used in the
projects (without distinguishing APISs).

Figure 3 shows the numbers of distinct API methods used in
the built projects of the corpus; reference projects are highlighted.
Methods on sub- and supertypes of static receiver types were not
included. For simplification, we also considered overloaded meth-
ods as basically one method.

There is a trend of increasing API footprint with project size.
Both axes are logarithmic, but project size grows more quickly
than the count of distinct API methods. Most projects, even most
of the largest ones, use less than 1,000 distinct API methods. As
the table with maxima and quartiles shows, there are a few projects
with exceptionally high counts. We have verified for these projects
that they essentially implement or test large frameworks (such as
ofbiz.apache.orq). Thatis, these outliers embody large num-
bers of ‘self-calls’ for a large number of API methods.

4.2 API coverage by the corpus

An important form of API-usage analysis concerns API cover-
age; see, for example, the discussion of coverage in the API mi-
gration project of [3]. That is, coverage information is helpful in
API migration as means to prioritize efforts, and to leave out map-
ping rules for obscure parts of the API. Coverage information is
also helpful in improving API usability [13, 12].

As it is the case with other forms of API-usage analysis, API
coverage may be considered for either a specific project, or, cu-
mulatively, for all projects in a corpus. For instance, for any given
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API, we may be interested in the API types (classes and inter-
faces) that are exercised in projects by any means: extension, im-
plementation, variable declaration, all kinds of method calls, and
other, less obvious idioms (e.g., instance-of tests). At a more fine-
grained level, we may be interested in the exercised members for
each given API type. Hence, qualitative measurements focus on
types and members that are exercised at all, while quantitative
measurements rank usage by the number of occurrences of a type
or a member or other weights.

Assuming a representative corpus, further assuming appropri-
ate criteria for detecting coverage, we may start with the naive
expectation that a good API should be covered more or less by
the corpus. Otherwise, the API would contain de-facto unneces-
sary types and methods—which is clearly not in the interest of the
API designer. However, it should not come as a surprise that, in
practice, APIs are not covered very well—certainly not by single
meaningful projects [3], but—as our results show—not even by a
substantial corpus; see below.

We have actually tried to determine two simple coverage met-
rics for all 77 known APIs: i) a percentage-based metrics for the
types; ii) another percentage-based metrics for all methods. How-
ever, we do not feel comfortable presenting a chart of those met-
rics for all known APIs here. Unless considerable effort is spent
on each API, such a chart may be disputable. The challenge lies
in the large number of projects and APIs, the different character-
istics of the APIs (e.g., in terms of their use of subtyping), aspects
of cloning, and yet other problems. Some of the issues will be
demonstrated for selected APIs below.
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Projects Min 1st Q | Median | Mean | 3rd Q | Max
All built 0.1629 | 1.954 | 2.769 4.861 3.746 59.93
Reference | 1.954 2.891 | 3.664 3.441 3.95 4.56

Figure 4. Usage of JIDOM’s distinct methods.

Let us investigate coverage for specific APIs. As our first tar-
get, we pick JDOM—a DOM-like (i.e., tree-based, in-memory)
API for XML processing. We know that JDOM is a ‘true library’
as opposed to a framework. Regular client code should simply
construct objects of the JDOM classes and invoke methods di-
rectly. We mention these characteristics because library-like APIs
may be expected to show higher API coverage than framework-
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like APIs—if we measure coverage in terms of called methods,
as we do here. In this paper, in the case of a call to an instance
method, we only count the method on the immediate static receiver
type as covered. We have checked that the inclusion of super- and
subtypes, as discussed earlier, does not change much the charts
described below.

Initially, we measured cumulative coverage for the methods of
the JDOM API to be 68.89 %. We decided to study the contribu-
tion of the different projects. There are 86 projects with JDOM
usage among the built projects of the corpus. Figure 4 shows the
percentage-based coverage metrics for the methods of the JDOM
API for those JDOM-using projects. The table with maxima and
quartiles gives a good indication of the relatively low usage of the
JDOM APIL

Obviously, 3 projects stand out with their coverage. We found
that these projects should not be counted towards cumulative cov-
erage because these projects contain JDOM clones in source form.
That is, it the API calls within the API’s implementation imply ar-
tificial coverage for more than half of all JDOM methods. Without
those outliers, the cumulative coverage is considerably lower, only
24.10 %.
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All built 0.3268 | 0.3268 | 0.9804 222 2.614 27.12
Reference | 0.3268 | 0.3268 | 1.144 2.369 3.023 11.44

Figure 5. Usage of SAX’ distinct methods.

Let us consider another specific API. We pick SAX—a push-
based XML parsing API. The push-based characteristics imply
that client code typically extends ‘handler’ classes or implements
handler interfaces with handler methods such as startElement
and endElement—to which XML-parsing events are pushed.
As a result, one should be prepared to find relatively low API
coverage—if we measure coverage in terms of called methods.

We measured cumulative coverage for the methods of the SAX
API to be 50.98 %. This relatively high coverage was suprising.
There are 310 projects with SAX usage among the built projects of
the corpus. Figure 5 shows the percentage-based coverage metrics
for the methods of the SAX API for those SAX-using projects. We
found that three of the projects with the highest coverage were in
fact the previously discussed projects with JDOM clones in source



API # Projects # Methods # Distinct methods # Derived types # API types
impl. | ext. | any | impl. | over. impl. | over. interf. | classes | interf. | classes

Swing 173 381 | 391 | 2512 11150 | 305 645 443 1859 39 92
AWT 194 75 225 | 4201 756 593 176 651 120 31 24
Java Collections | 120 0 120 | 986 0 16 0 208 0 3 0

SAX 28 21 42 428 90 85 21 37 29 12 3
JUnit 3 38 40 4 344 4 19 3 46 2 2

Core XML 11 5 14 89 13 17 4 14 5 9 3
SWT 5 8 10 37 86 4 13 25 11 3 3

logdj 1 8 8 25 87 7 9 2 9 2 3
Reflection 7 0 7 10 0 1 0 7 0 1 0

JMF 4 2 6 8 6 6 3 4 3 3 3

Table 4. Top 10 of the APIs with framework-like usage (sorted by the sum of numbers of API-interface implementations and

API-class extensions; see the first 3 columns).

form. Closer inspection revealed that the JDOM API implements,
for example, a bridge from in-memory XML trees to SAX events,
and hence, it pushes itself as opposed to regular SAX-based func-
tionality that is pushed. This is an unexpected but correct use of
the SAX API within the DOM API which brings up coverage of
the SAX API. Even if we removed those 3 projects, the cumulative
coverage only drops down a little to 49.34 %.

We also found other reasonable reasons for relatively high cov-
erage. There are projects that use inheritance and composition to
define new handlers (e.g., http://corpusreader.sourceforge.
net/) so that API methods may get called through ‘super’ or del-
egation. As the quartiles show in the figure, most projects use
a small percentage of the SAX APIL. Most of the relevant meth-
ods are concerned with processing the parameters of the handlers.
Many of the SAX projects use (largely) predefined handlers, e.g.,
for validation—thereby implying a very low coverage.

4.3 Framework-like API usage

Finally, we introduce an analysis for framework-like API us-
age: What API types are typically implemented and extended, if
any? Also, can we determine whether a given API is presumably
more framework-like (less class library-like) than another API?
What are the parts of an API that account for framework-like us-
age? In the context of API migration, proper framework-like us-
age is very challenging because it implies an ‘inversion of con-
trol” in applications, which is very hard to come by with mapping
rules [2].

More specifically, by framework-like usage, we mean any sort
of idiomatic evidence for refining, configuring, and implementing
API types within client code. In particular, we may measure i)
extensions (i.e., client classes that extend API classes); ii) imple-
mentations (i.e., client classes that implement API interfaces); iii)
overrides (i.e., client classes that subclass API classes and override
inherited API methods). Obviously, there are facets that may be
harder to identify generically. For instance, if a framework would
involve plug-in or configuration support based on regular method
calls, then such framework-like usage would be missed by i)—iii).
There is again a way of defining framework-like usage in a cumu-
lative way—very similar to coverage analysis. That is, for a given
API, we may determine the set of API types that are ever involved
in framework-like usage.

In reality, many APIs allow for both—class library-like and
framework-like usage. For instance, the Core Java API DOM is
essentially interface-based so that new providers can be imple-
mented, but there are default implementations for the important

use case of DOM as an in-memory XML APIL. In contrast, there
are other APIs that are subject to framework-like usage more in-
evitably. For instance, the Core Java API Swing is often used in a
way that the JPanel class is overridden.

In our corpus, 35 out of all 77 known APIs exercise a measur-
able facet of framework-like usage. Table 4 lists the top 10 of these
APISs. In the table, we also show the numbers of API methods that
are implemented or overridden throughout the corpus: we show
both absolute numbers of implementations/overrides and the num-
bers of distinct methods. Further, we show the number of derived
types in client code, and the number of API types ever exercised
through framework-like usage.

Surprisingly, the table shows that there are only 7 APIs that
are used in 10 or more projects in a framework-like usage manner.
This clearly suggests that our corpus (of built projects) and our
selection of APIs is trivial in terms of framework-like usage. Many
APIs do not show up at all in the table—despite heavy usage in
the corpus. For instance, DOM-like APIs like JDOM or XOM
do not show up at all, which means that they are only used in a
class library-like manner. The DOM API itself is subject to API-
interface implementations in a number of projects. In the online
appendix of the paper, we also break down the numbers of the table
to show the types that are commonly involved in framework-like
usage: just a hand full of GUI, XML and collection types account
for almost all the framework-like usage in the corpus.

5. Threats to validity

5.1 Internal validity

The selected group may fail to be representative for the whole
population. If we define the whole population to consist of all
open-source Java projects, then we restricted ourselves in at least
three ways, namely, the source of picking the projects (Source-
Forge only), the version control system (SVN only) and the build
tool (Apache Ant only). These choices were concessions to the
primary goal of the present research milestone: to prove the fea-
sibility of large-scale, automated, resolved AST-based API-usage
analysis.

If we were picking open-source projects manually and mak-
ing sure these projects build, then we could be sure not to miss
‘any projects of interest’. However, we are not exactly sure how
to assemble a suitable hand-picked corpus; we are also not con-
vinced that the internal validity issues of such a manual approach
are less severe than ours (if we assume to further improve inclusion
of projects in the future).

1322



5.2 External validity

Interaction of setting and treatment: SourceForge is arguably
not an appropriate source of representative contemporary software—
open-source or not. (Hence, this threat is connected with the afore-
mentioned threat.) A future, comparative study may determine
how, for example, API coverage varies across different open-source
repositories or ‘well-known’ hand-picked corpora.

5.3 Construct validity

Mono-method bias: We rely mostly on the results gained from
the AST-based fact extractor gathered through a default build. This
means, for example, that we miss sources that were not build in
this manner. We also miss projects whose builds fail (and hence
fact extraction is not completed). Further, there is the possibility
of inconsistencies in fact extraction and performing the queries for
API analysis. In fact, we fixed many such issues throughout the
development.

6. Related work

We identify several categories of related work.

6.1 Analysis of open-source repositories

Our work relates to other work on analyzing open-source repos-
itories. For instance, there has been work on the analysis of down-
load data, evolution data, metadata (e.g., development status),
or user data (e.g., the number of active developers), and simple
metrics (e.g., LOC) for open source projects (e.g., on Source-
Forge) [11, 20, 10, 34]. In this context, we also refer to the project
FLOSSmole http://flossmole.org/ and the project FOS-
Sology [7]. Usually, such large-scale efforts do not involve AST-
based source-code analysis. For instance, in [9], the adoption of
design patterns is studied in open-source software, but documen-
tation (commit messages) as opposed to parse trees are analyzed.
In [19], a very large-scale code clone analysis is performed.

In this context, our contribution is a scalable process for ac-
tually obtaining a large corpus of open-source projects that are di-
rectly amenable to AST-based analysis, which opens up new appli-
cations and improved precision of API-usage analysis, as we have
shown in Sec. 4. There exist various code-search engines (see [27,
30, 31, 8] for discussions). Again, our approach distinctly lever-
ages resolved ASTs.

6.2 Properties of Java software

There are several forms of related work that aim to analyse rel-
atively simple properties of Java software (in the wild). In [4], key
structural attributes of a hand-picked corpus of well-known pro-
grams are measured, and a careful analysis of the distribution for
these properties is provided. We also refer to [35] for a related
study on power-law distributions for class relationships. In [5],
Java bytecode programs are studied empirically to determine sim-
ple counts (number of methods per class, number of bytecode in-
structions per method, etc.), structural metrics such as the com-
plexity of control-flow and inheritance graphs. In [6], micro pat-
terns (which are patterns at a lower level than design patterns) are
analyzed. In [25], Java bytecode sequences are analyzed for most
commonly used bytecode pairs.

These efforts are concerned with language aspects other than
API usage. None of these efforts leverage large-scale corpora

comparable to the one of the present paper. None of these efforts
deal with the methodological challenges of obtaining such a large
corpus that is amenable to the analysis of resolved ASTs.

6.3 API-usage analysis

There are other efforts that we would like to collectively label
with API-usage analysis. The kinds of analysis in such related
work are different from those considered in the present paper.

One important direction is concerned with the analysis of API
usage patterns. In [23], data mining is used to determine API reuse
patterns, and more specifically classes and methods that are typi-
cally used in combination. We also refer to [21] for a related ap-
proach. In [14], data mining is used, too, to determine frequently
appearing ordered sets of function-call usages, taking into account
their proximal control constructs (e.g., if-statements). In [37], data
mining is used, too, to compute lists of frequent API usage patterns
based on results returned from code-search engines; the under-
lying code does not need to be compilable. In [18], a machine
learning-based approach is used to infer protocol specifications
for API; see [33] for a related approach. In [1], inter-procedural,
control-flow-sensitive static traces for C programs are used to mine
API-usage patterns as partial orders from source code.

Perhaps the most closely related work is [31]: API hotspots
and coldspots (say, frequently or rarely used classes and methods)
are determined. This work is again based on the analysis of data
obtained from a code-search engine. Such frequency analysis can
be compared to our efforts on coverage analysis (c.f., Sect. 4.2)—
except that we are using resolved ASTs. Also, we are specifically
interested in the large-scale, cumulative coverage. Further, we are
interested in interpreting analysis results in terms of API charac-
teristics, and with a view on API migration.

In [32], library reuse is studied at a level of shared objects in
the operating systems Sun OS and Mac OS X. One of the obser-
vations is that reuse seems to be low in the sense of Zipf’s law.
Thus the most frequent function will be referenced approximately
twice as often as the second most frequent function, which occurs
twice as often as the fourth most frequent function, etc. We have
found a similar distribution for the frequency of method calls in
our corpus; see the online appendix of this paper.

We have emphasized the utility of API-usage analysis for API
migration, and we have described examples of such analysis that
are tailored towards API migration. Let us mention a few more
applications of API-usage analysis. In [28], a method for improv-
ing API documentation based on usage information is developed.
In [13], the usability-improving use of wrapper libraries for APIs
is discussed. In [26], APIs are analyzed to automatically extract
ontologies about programming domains. In [15], source code is
analyzed to find symptoms of API-method imitation, i.e., code that
seems to reconstruct methods already offered by the API, thereby
suggesting means of code improvement.

7. Conclusion

We have demonstrated a scalable approach to AST-based API-
usage analysis for a large-scale corpus of open-source projects.
Our implementation allows us to answer questions about usage of
many well-known Java APIs. We have demonstrated this capabil-
ity, for example, with specific aspects of XML programming APIs
and generic aspects of framework-like API usage.

Our results should be advanced so that additional repositories,
build systems, and ‘well-known’ projects are taken into account.
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We are also working on advancing our method of fact extraction
so that extra elements of the architecture provide better guarantees
as to the completeness and correctness of fact extraction. For in-
stance, we are working on a component for build forensics that
tells us, subject to heuristics, whether an apparently successful
project build is actually trustworthy.

Ultimately, we want to advance the suite of analyses so that

this sort of empirical work becomes more directly useful for re-
searchers and practitioners who are interested in API migration.
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