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ABSTRACT
This paper presents the results of the first study of the uniqueness of
source code. We define the uniqueness of a unit of source code with
respect to the entire body of written software, which we approximate
with a corpus of 420 million lines of source code. Our high-level
methodology consists of examining a collection of 6,000 software
projects and measuring the degree to which each project can be
‘assembled’ solely from portions of this corpus, thus providing a
precise measure of ‘uniqueness’ that we call syntactic redundancy.
We parameterized our study over a variety of variables, the most
important of which being the level of granularity at which we view
source code. Our suite of experiments together consumed approx-
imately four months of CPU time, providing quantitative answers
to the following questions: at what levels of granularity is software
unique, and at a given level of granularity, how unique is software?
While we believe these questions to be of intrinsic interest, we dis-
cuss possible applications to genetic programming and developer
productivity tools.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement; D.2.8 [Software Engineering]: Metrics

General Terms
Human Factors, Languages, Measurement

1. INTRODUCTION
Most creative endeavors produce highly unique artifacts. For

example, as authors writing a technical paper, we expect this very
sentence to have an extremely high probability of being unique; that
is, we expect it to be the first use of these words in this exact order
in the history of English prose. We do not have the same intuition
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when we are programming, however. For all of its difficulty and
subtlety, the fundamentals of programming often seem rote.

There are several reasons why this may be true. For one, software
source code necessarily shares many common syntactic elements.
Programming languages tend to be fully defined by relatively sim-
ple formal grammars that specify structured and idiomatic source
code. As a simple example, consider the Java language: the gram-
mar dictates that statements be confined to method bodies, which
in turn must reside within class declarations, each of which con-
tains strictly defined sequences of tokens that include keywords and
required punctuation. Software engineers impose further homogene-
ity through voluntary conformance to style conventions. Examples
include naming conventions that restrict the space of available identi-
fiers and design conventions that bound function and statement sizes.

Commonality in software engineering tasks may lead to further
similarity in source code. For higher-level tasks, this phenomenon
is pervasive and is evidenced by the plethora of reusable software
libraries, components, and frameworks that engineers have created
to minimize redundant development effort. At a lower level of
granularity, repetitive and idiomatic code fragments are common:
programs written in C-like languages are often full of simple indexed
for loops over known bounds, for example.

These traits are all evidence of a propensity for similarity in soft-
ware, which—considering the sheer volume of software in existence
and the continued growth of software engineering—suggests the
possibility of a “singularity” in software engineering’s future: a
point of convergence at which all necessary software will have been
produced. Taken at face value, this proposition borders on futurist
and is somewhat absurd: clearly new requirements and domains will
drive new software for the foreseeable future. However, examin-
ing the question in terms of granularity yields much more realistic
scenarios.

For example, consider the C programming language and its asso-
ciated body of software. At one extreme, it is trivially true that every
token type in the language has been used at least once, and it is likely
true that every legal two-token sequence has been written as well.
Once we reach the level of expressions or statements, though, the
question becomes more subtle and interesting: although the number
of legal statements in the language is theoretically infinite, the num-
ber of practically useful statements is much smaller—and potentially
finite. An excessively large arithmetic expression is usually written
as a sequence of smaller statements of bounded size, for example.
With this in mind, it is entirely possible that every useful statement
in the C language has already been written. It is less likely that every
useful block or function has been written, though, but a question of
degree then arises: what proportion of the set of practical blocks or
functions have we written? Stated more generally, just how close
are we to writing all the source code we need?
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This paper presents the results of the first study that addresses this
question. Our work consists of a large scale study of open source
software written in three of the most widely used languages: C,
C++, and Java. We approximate the “body of all software” with a
corpus of 420 million lines of source code. Our high-level method-
ology consists of examining a collection of 6,000 software projects
and measuring the degree to which each project can be “assembled”
solely from portions of the corpus, thus providing a precise mea-
sure of “uniqueness.” We parameterized our study over a variety of
variables, forming a suite of experiments that together consumed
approximately four months of CPU time. Collectively, our primary
contribution is in providing a quantitative answer to the following
question: how unique is software?

While we believe that the answer to this question is of intrin-
sic academic interest, there are several practical applications and
consequences:
Automation of Programming Recent research [20] has demon-
strated notable improvements in the application of genetic algo-
rithms to software engineering tasks. Genetic programming (GP)
involves the use of genetic algorithms to automate the act of pro-
gramming [10]; a consequence of a lack of uniqueness of source
code—at least at certain levels of granularity—is that the enormous
search space for these algorithms could be significantly constrained.
While the full automation of system-level development tasks is likely
to remain elusive, tasks at the levels of granularity at which software
tends to lack uniqueness—ideally the most menial and repetitive
tasks—may be quite accessible to GP systems.
Development Tool Research Modern development environments
often provide a form of code completion, which allows a developer
to save time by typing a partial symbol name, like Str, and receiving
and accepting suggestions for the complete name, like String and
StringBuilder. Similarly, predictive text input schemes on mo-
bile devices allow the completion of natural language words, with
rich extensions in the form of phrase completion forthcoming [16].
A lack of uniqueness in source code would suggest the opportunity
for research into analogous extensions for development tools: we
may be able to be extend standard code completion to allow for
full-statement, code block, or even function completion.
Code Reuse By quantifying the level of code sharing—incidental
or intentional—across a large body of software, our work can serve
as a sort of limit study on the potential for code reuse. A line of
recent research has sought to provide advanced tool support for
small-scale code reuse [4]; our results provide a concrete measure
of these tools’ applicability at various levels of granularity and may
provide direction for future research.

This work is organized as follows: in the following section (Sec-
tion 2), we survey related work and discuss this study’s novelty. In
Section 3, we describe our methodology, which is followed by our
results (Section 4), which suggest a significant lack of uniqueness
of software at certain levels of granularity. Finally, we discuss var-
ious threats to validity (Section 5) and our plans for future work
(Section 6).

2. RELATED WORK
While we believe our study of uniqueness to be the first of its

kind, other areas of software engineering research are related and
share similar concepts.
Clone Detection Clone detection is a research area concerned with
detecting and studying the copying and pasting of source code frag-
ments, with the first major work being Baker’s dup tool [3]. Code
clone detection is tied to the idea of intentional copying and pasting—
a deliberate action of a developer—and the tools, techniques, and

Language Projects Source Files Lines of Code

C 3,958 349,377 195,616,239
C++ 1,571 253,754 89,827,589
Java 437 595,271 122,820,171

Table 1: Corpus summary

Tokens/Line (Avg. / Median / P75 / P95 / P99)
Language All non-blank lines Lines w/ >1 token

C 6.66 / 5 / 9 / 17 / 29 7.95 / 6 / 10 / 18 / 30
C++ 6.95 / 6 / 10 / 19 / 29 8.72 / 7 / 11 / 20 / 32
Java 6.90 / 6 / 9 / 16 / 28 8.48 / 7 / 11 / 17 / 32

Table 2: Relating tokens to lines across the corpus

studies are informed by this. Our study considers duplication of any
kind, but our focus is on incidental similarity (or lack thereof). The
effect of intentional code clones on our results is minimal, and we in
fact consider them to be a minor nuisance that we explicitly control
for (cf. Section 4). That aside, two studies of cloning are relevant to
this study.

Liveri et al. present a large scale study of code clones within
the FreeBSD ports collection, a body of code similar in size to the
subjects of our study [13]. They solve the related scalability problem
with a parallel version of Kamiya et al.’s CCFinder clone detection
tool [9]. Their results are dominated by file-level code clones, i.e.
copies of entire files. In our study of uniqueness, we consider these to
be an artificial source of similarity that we also explicitly control for.

Al-Ekram et al. present a much smaller study [1] of cloning be-
tween open source software projects that share similar functionality.
They find a general lack of these ‘cross-project’ clones, but they
note a nontrivial amount of incidentally similar code fragments that
result from the use of similar APIs. This study hints at one source
of a potential lack of uniqueness in software and serves as partial
motivation for our study.

Finally, as a somewhat superficial difference, we note that al-
though we consider a variety of levels of granularity, the bulk of our
interesting results fall at levels of granularity squarely below those
set as minimum thresholds in both past [3] and recent [7] clone
detection tools; in effect, we have fully explored the space ignored
by these tools.

Studies of Reuse Mockus presents a study of large-scale code
reuse [14] in open source software over a massive, continually-
growing dataset [15], which is approximately five times larger than
ours. However, this study only considers file-level reuse, which we
explicitly control for and ignore, rendering it complementary to our
own. Research into reuse metrics [5] seeks to quantify the time and
resources saved by intentional reuse, while our study focuses on
incidental similarity, which may indicate the potential for reuse.

Most recently, Jiang and Su present a new tool, EqMiner [8],
that locates functionally identical code fragments based completely
on testing. The authors’ motivation for the study is to explore the
functional uniqueness of programs, while ours is to explore syntactic
uniqueness. This semantics-based study is complementary to our
own, and extending it to our scale would be especially interesting.

Code Search Code search platforms often operate over collections
of software at or in excess of the size of our own study [2, 18], with
less scalable variants allowing for more flexibility through semantic
search using test cases [12, 17]. This line of research can benefit
from our study by treating it as a form of limit study on various
types of syntactic reuse: levels of granularity at which software is
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highly unique would form ideal candidates for more advanced and
flexible search techniques.

Schleimer et al.’s MOSS [19] uses a form of document finger-
printing to scalably characterize likely-plagiarized software. This
work is based on the assumption of a certain level of uniqueness in
software; our study directly measures this value for a large sampling
of software, and our results may possibly lead to more accurate and
complete plagiarism tools.

3. STUDY DESIGN
Our study aims to answer the general question of the degree of

uniqueness of software. While simple conceptually, this question
is fraught with subtlety and complexity. This section describes our
methodology in detail, with special attention given to the rationale
for our various design choices that may affect the validity of our
results. We start with a high-level summary of our methodology
(Section 3.1) and continue with a discussion of our experimental
variables (Sections 3.2–3.5). We then summarize with a complete
inventory of our suite of experiments (Section 3.6).

3.1 High-level Methodology
This study is based on a metric for uniqueness that we define in

terms of a software project. We begin our description with a simple
thought experiment that illustrates our intuition:

You are a software engineer starting a new project, re-
quirements in hand. Unfortunately, your keyboard has
malfunctioned, and your only method for entering pro-
gram text is through copying and pasting existing code
fragments. Fortunately (perhaps), you have oracle-like
access to all source code that has ever been written.
How much can you accomplish?

This amount—the proportion of the project that you are able to
complete—is the essence of our metric. A low value for a specific
project indicates that the project is unique; low values for all projects
would indicate that software is unique.

When defined as the object of a thought exercise, this metric is in-
herently impossible to calculate. We take three steps in concretizing
it as a computable value. First, we approximate ‘all code that has
ever been written’ with a large collection of source code, which we
call the corpus. Next, we precisely define our representation—our
‘view’—of source code, which then leads to a natural methodology
for calculating uniqueness at various levels of granularity.
Gathering a Corpus Our corpus consists of a collection of open
source software in three languages: C, C++, and Java. We collected
the bulk of our corpus from the complete source distribution of
the current release (12) of the Fedora Linux distribution. A Linux
distribution like Fedora has several properties that benefit our study:
Size: With a collection of software designed to accommodate the
needs of a large user base, a Linux distribution contains a vast
amount of source code.
Diversity: The large amount of source code is distributed among
a proportionally large collection of software projects with diverse
functionality.
Lack of Duplication: Fedora is distributed as a managed system
of packages and is likely to contain little large-scale duplication,
preferring package-based dependencies in place of copies. While
copies of source code in the corpus would not taint our results, a
study of this scale must use CPU time economically, and scanning
duplicates is an obvious waste.

This collection contains an adequate amount of C and C++ code,
but we found Java to be underrepresented. To complete our cor-
pus, we supplemented it with a similarly diverse collection of Java

Language Project Description Size (Lines)

C

atlas Linear algebra kernel 554,342
ffdshow Audio/video codec 361,164
freedroid Arcade game 75,926
grisbi Personal accounting 162,033
net-snmp SNMP library 306,598
pnotes Desktop notes 29,524
sdcc Small device C compiler 138,093
tcl Scripting language 226,499
winscp SCP client 174,936
xbmc Media center 1,947,596

C++

7zip Compression tool 104,804
audacity Audio editor 209,073
dvdstyler DVD video authoring 17,764
hugin Panoramic photo stitcher 91,234
mediainfo Media file identifier 100,312
mumble Voice communication 73,858
npp Text editor 91,515
ogre 3d engine 392,212
postbooks ERP/CRM and accounting 271,377
scummvm Adventure game engine 738,262

Java

adempiere ERP/CRM business suite 1,174,343
arianne Multiplayer game engine 198,539
freecol Strategy game 164,797
jedit Development environment 176,508
jmri Model railroad interface 354,431
jtds JDBC driver 66,318
openbravo Web-based ERP 192,020
rssowl Feed reader 169,077
sweethome3d Interior design tool 73,180
zk Ajax framework 181,207

Table 3: Target projects retrieved from SourceForge

projects from http://www.java-source.net. A summary of
our complete corpus appears in Table 1.

Source Representation This study takes a lexical view of source
code, representing each source file as a simple sequence of tokens.
We found this to be a viable compromise between scalability and
flexibility. A simpler, line-based view would be inexpensive to
compute but highly brittle; a measure of uniqueness at the line level
is liable to be an overestimate. A more rich representation, like
syntax trees or dependence graphs, would allow for more flexibility
but would be expensive to compute for 6,000 projects. In addition,
overly abstract representations are increasingly disconnected from
the actual act of programming, which we would like our study to
relate to as much as possible.

To more conveniently relate our lexically-based study to more
familiar measures, we performed a brief study of the distribution
of tokens over lines on our corpus, the results of which appear
in Table 2. The distributions are quite consistent across the three
languages, likely owing in no small part to style conventions. For
each language, we report statistics for both 1) all non-blank, non-
comment lines and 2) lines with more than one token.

Methodology Recall that our metric for uniqueness is conceptually
based on the amount of a given project that can be ‘assembled’
from already-written code. With a corpus and code abstraction
selected, we concretize this concept in a measure we call syntactic
redundancy. We calculate this metric for a specific software project
with respect to a corpus and a given level of granularity, which,
under our lexical view, we define in terms of contiguous fixed-length
token subsequences (token-level n-grams, or shingles).

Briefly, a given token in the input project is ‘syntactically redun-
dant’ if it is enclosed in at least one sequence that is ‘matched’ by
some sequence in the corpus. Syntactic redundancy is the proportion
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In-Memory

... while ( path [ dlen ] == '/' ) ++ dlen ;...
if ((path[dlen] == '/')) 
{
  subpath += dlen + 1;
  len -= dlen + 1;
}
...

if ( ( path [ dlen ] == '/'

Target Project 1. Lexical Analysis

Measured: 8/11 ‘redundant’

) )

Corpus

2. Sequencing of Target Project

3. Linear Scan of Corpus 
for Matching Sequences

if ( ( path [ dlen ] == '/'

( ( path [ dlen ] == '/' )

( path [ dlen ] == '/' ) )

if ( ( path [ dlen ] == '/' ) )

Record (  ) Matches

4. Tabulation

Figure 1: Overview and example of our methodology for calculating ‘syntactic redundancy’

of ‘redundant’ tokens in a given project. We illustrate this process
graphically in Figure 1 and narrate the steps here.

Input As input, we have 1) a target project and 2) a corpus, which
are both collections of program source files, and 3) a positive
integer g representing the level of granularity.

i. Sequence the Target Project First, we analyze each of the target
project’s source files according to the lexical specification of
the target language. We then enumerate every fixed-length
token subsequence of size g (i.e., the token-level g-grams)
and load them into memory—a process we call ‘sequencing.’

ii. Scan, Sequence, and Process the Corpus We then perform a
linear scan of the corpus, sequencing each corpus file under
the same conditions. For each corpus sequence, we search for
a match in the target project. If found, we record the tokens
in the target project that comprise the matching sequence as
‘redundant,’ reflecting the fact that we could have copied and
pasted this corpus sequence to form this segment of the target
project. Note that due to overlap, tokens may be marked as
redundant multiple times, but each token will only be counted
once.

iii. Collect Results The process concludes with a final tabulation
of the target project’s sequences (which are processed and
residing in memory), returning the ratio of ‘redundant tokens’
to ‘all tokens’ as a percentage.

With our basic methodology in place, we continue with a description
of our four main experimental variables.

3.2 First Variable: Target Projects
The first variable in our experiments is the target project. We

chose two sets of target projects in an effort to compromise between
depth and breadth of study: our first (small) set of projects allows us
to perform a large number of measurements with absolute precision,
while our second (much larger) set allows us to more accurately
draw general conclusions about the uniqueness of software.

First Set: Depth We retrieved our first set of targets from Source-
Forge1 by walking the ‘Most Active Projects – Last Week’ list and
collecting the top 10 primarily-C, C++, and Java projects. Descrip-
tions of these 30 projects appear in Table 3.

1http://sourceforge.net

Selecting from list has several advantages. First, the ranking
is in terms of site activity—including bug tracker activity, forum
posts, and releases—which prevents us from considering abandoned
projects. Second, the scope of the ranking criteria is limited to a
window of a single week, providing an opportunity for both new and
mature projects to appear. Third, the list excludes downloads as a
criterion; lists that include downloads are dominated by peer-to-peer
file sharing applications and would not have resulted in a diverse
study.
Second Set: Breadth We increase the breadth of our study with a
second set of projects: the 6,000 corpus projects themselves. Cal-
culating syntactic redundancy for each project in this set would
ordinarily be prohibitively expensive: directly applying our tech-
nique from Section 3.1 would amount to a quadratic-time scan of
420 million lines of code.

Fortunately, our methodology lends itself to stochastic estimation.
Our estimation technique is illustrated in Figure 2 and is largely
straightforward. We treat the syntactic redundancy of a token as
a binary random variable and estimate its value by sampling uni-
formly from the population of tokens in a project. We determine the
number of necessary samples according to a desired margin of error,
confidence, and project size using standard techniques [11]. In our
experiments over these 6,000 projects, we calculated redundancy
with a ±2.5% margin of error and 95% confidence.2

There is one subtlety, which is reflected in Figure 2: to obtain
correct results, we must correctly compute the redundancy of each
sampled token. This involves generating all sequences that include
each sampled token, even if they include other, non-sampled tokens.
However, these non-sampled tokens are not to be counted when
tabulating, as they do not belong to the ‘sampled’ project. Note also
that sampling is limited to the target project: after sampling, we
always perform a scan of the entire corpus.

Though we believe our methodology to be sound, we did validate
it empirically on our 30 SourceForge projects by comparing the pre-
cisely and approximately computed values. We found the estimation
to be quite accurate in all trials, within a ±1.0% range of the true
value despite using the above parameters.

3.3 Second Variable: Granularity
Our second experimental variable is the level of granularity, g,

which controls the length of the token sequences our analysis gener-
2In practice, enforcing these parameters requires sampling approx-
imately 1,500 tokens per project. Variations are due to differing
project sizes.
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In-Memory

if ( ( path [ dlen ] == '/'

1. Lexical Analysis

Estimate: 2/3 ‘redundant’

) )

3. Sequencing

if == '/' == '/'

== '/'

if == '/'

(4. Corpus Scan, matches marked)

2. Sampling of Tokens

if == '/'

with respect to desired Margin of Error and Confidence

( ( ] )

dlen ] ) )

( ( path [ dlen ] ) )

( ( path [ dlen ] ) )

5. Tabulation

Figure 2: Scalable estimation technique for our breadth experiments

ates during the ‘sequencing’ phase. Put more plainly in terms of our
earlier thought exercise, g represents the size of the code segments
that we copy from the existing code to ‘assemble’ a project. We pa-
rameterize our experiments over a variety of token sequence lengths.
Our goal is to view our study from two complementary perspectives:
at what levels of granularity is software unique, and at a given level
of granularity, how unique is software?

We set our values for granularity by first selecting two critical
values, a functional minimum (the median value of tokens in a single
line) and maximum (determined through exploratory experiments),
that denote a range of relevant values. The scale of our study prevents
us from performing experiments on every value in this range; we
instead select g through a series of ‘passes’ over this range: in the
first pass, we perform experiments over a small, fixed number of
values; in subsequent passes—the number of which are limited by
our computing resources—we iteratively refine our information by
performing experiments on the midpoints of previously-computed
values of g.

3.4 Third Variable: Matching Criteria
In our methodology, we mark a token as redundant when we find

a ‘matching’ sequence for it in the corpus. While the most clear
and obvious definition of ‘match’—exact equality—is the most
intuitive, we also explored alternate definitions that allow for some
imprecision.

It may not be clear at first why approximate matches are worth
exploring: on the surface, such an extension might seem to do
little more than inflate the results. Note, though, that we are only
interested in specific cases involving slight imprecision: it may be
the case that a trivial ‘nudge’ causes the threshold for uniqueness
in software to be significantly higher, and it is precisely this idea—
the interplay between granularity and uniqueness—that we wish
to explore fully. Our intuition here is experiential: as software
engineers, we hypothesize that many potential matchings may fail
due to very slight differences, like an operator in an expression, the
name of an identifier, or the ordering of two parameters.

if ( ( path [ dlen ] == '/'

 (*) No Abstraction

) )

if ( ( ID$0 [ ID$1 ] == '/' ) )

if ((path[dlen] == '/')) 

 (*) Renamed Identifiers

if ( ( ID$0 [ ID$1 ] == C$0 ) )

Renamed Literals and Identifiers

IF LB LB ID LK ID RK OP LIT RB RB

Lexical Classes Only

 Original Program Text

 (*) Used in majority of experiments

Figure 3: Possible levels of abstraction for token sequences

We expand our experimental infrastructure with the ability to
detect matches within a specified Hamming distance. Briefly, Ham-
ming distance is a metric defined over two sequences of equal length,
and it is calculated as the number of positions at which their elements
differ.

Implementing this extension in a scalable manner is certainly one
of this study’s more involved engineering tasks. While finding all
exactly matching sequences is fast and straightforward using hashing,
the naïve approach to finding all approximate matches involves a
linear number of expensive Hamming distance calculations per query.
We solve this problem with a new randomized hashing algorithm
that is related to the concept of Locality Sensitive Hashing [6]. The
technical details and proofs are outside the scope of this paper; we
focus instead on the theoretical properties that affect the validity of
our results:

Precision As a randomized—not an approximation—algorithm,
our algorithm only returns true matches; that is, it returns no
false positives.

Recall The probability of missing an arbitrary match has provable
bounds and is tunable. We set this probability to 0.99 in our
experiments.

As applied to this study, these properties can be summarized plainly:
any syntactic redundancy value we report (that allows for impreci-
sion) is a sound underapproximation that is ‘very likely’ near the
true value.

In our experiments, we measure syntactic redundancy with respect
to a) exact matches only and b) matches allowing for a Hamming
distance of up to 1, 2, 3, and 4 (separately reported).

3.5 Fourth Variable: Abstraction
In our example depicted in Figure 1, the sequences consist en-

tirely of concrete program text: the only processing is in separating
the tokens according to a lexical specification. In programming,
however, some aspects of concrete program text are arbitrary and do
not affect semantics, with a simple example being variable naming.
Failing to account for this may result in our study reporting that
software is overly unique.

We can control for this kind of variation by abstracting the indi-
vidual token sequences from their concrete program text to a more
normalized form. Various schemes are possible; we present four
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methods in Figure 3. In the bulk of our experiments, we limit our-
selves to the two most conservative types: none, or no abstraction
at all, and renamed identifiers, which involves a consistent alpha
renaming of all ‘identifier’-typed tokens but leaves all other tokens—
including the values of literals—untouched.

3.6 Summary
We have defined a general methodology and four experimental

variables. Our final set of experiments includes the calculation of
syntactic redundancy under the product of the following conditions:

1. Two sets of target projects: 30 SourceForge projects under full
precision (depth) and 6,000 corpus projects under stochastic
estimation (breadth).

2. Two levels of abstraction: none and renamed identifiers.
3. Exact ‘matches’ and matches allowing for maximum Ham-

ming distances of 1, 2, 3, and 4.
4. As many levels of granularity as our computing resources will

allow.

4. RESULTS
This section presents the results of our study. We begin with

a brief description of the operation of our experiments, including
an overview of our implementation and the number and type of
experiments we completed. We then present the results of our ‘depth’
experiments over the 30 SourceForge projects, which is followed
by a discussion of the results of our ‘breadth’ experiments over all
6,000 corpus projects. In the following sections, our emphasis is on
presenting our data in as raw, clear, and unbiased a form as possible.

4.1 Implementation and Operation
Our experimental infrastructure consists of an entirely new, highly

optimized Java application running on a dual-Xeon server with 16
GB of main memory. Notable features include:

• The ability to calculate syntactic redundancy for multiple
projects in parallel, which was critical for our breadth experi-
ments.

• Sound and efficient computation of approximate matches (cf.
Section 3.4). In addition, we can compute redundancy for mul-
tiple values of ‘maximum Hamming distance’ simultaneously,
with little marginal cost in both time and space.

• Simple extension to other languages by providing a lexical
specification.

• Resource awareness: our application expands to consume all
available memory and CPUs as efficiently as possible.

As a 100% Java application, our infrastructure should run on any
Java-supported platform. In practice, however, we require a 64-
bit system and virtual machine, and certain optimizations present
in Sun’s 1.6+ reference implementation are essential to making
reasonable progress at this scale.

As we described in the previous section, we fix a set of values
for all but one experimental variable, granularity (g, expressed in
tokens); we instead perform what amounts to a systematic ‘search’
over various values between a functional minimum and maximum.
At the time of this writing, our experiments have consumed a total
of approximately four months of CPU time and have completed
redundancy measurements for the following levels of granularity:

Depth: 6, 9, 13, 16, 20, 23, 27, 31, 35, 56, 77, 98, 120

Breadth: 6, 20, 35, 77, 120
These cumulative results have provided a sufficient quantitative
answer to our question of the uniqueness of software.

4.2 Depth: SourceForge Projects
The results of our experiments over the 30 SourceForce projects

appear as plots in Figure 4. The independent variable is the level of
granularity in tokens, g, and the dependent variable is the syntactic
redundancy of the project expressed as a percentage. Each line on
each plot represents the redundancy value with respect to two vari-
ables: abstraction (Section 3.5) and matching criteria (Section 3.4).

We perform no estimation or approximation during these ‘depth’
experiments, and we present the results in as raw a form as possible.
We briefly summarize the extent our filtering and summarization:
a) for clarity of presentation, we omit lines for ‘Max Hamming
distance ≤ 4,’ though the data are available; b) due to the dramatic
drop off in redundancy after g = 50, we focus each graph on g ≤
65; and c) the resolution of these graphs may give the illusion of
smoothing on many of the lines, but we did not perform any.

The most striking feature of these graphs is their similarity: apart
from a few outliers, all appear to follow a similar trend. First, at the
minimum level of granularity, 6 tokens (or approximately one line),
between 50% and 100% of each project is redundant, depending on
matching and abstraction. At this point, the sets of lines take two
paths: the ‘no abstraction’ set drops off and flattens quickly, while
the ‘renamed identifiers’ set maintains a period of flatness at which
redundancy is high. After a more delayed decline, they reach an
inflection point at around 20-25 tokens, flatten out, and finally join
the ‘no abstraction’ lines. In all but one experiment, we measured
no significant amount of redundancy at levels of g over 60.

The convergence of all redundancy values to a common level
highlights an ancillary benefit of our choice of abstraction levels:
control for clones and the resulting focus on incidental similarity. At
sufficiently high levels of granularity, the ‘no abstraction’ results can
be interpreted as being generally composed of intentional copying,
while the ‘renamed identifiers’ results are more likely to include
incidental similarity. (Note that this characterization is not perfect,
only probable: code can be incidentally completely identical, and in-
tentional copies can be consistently renamed or otherwise adapted.)
The extensive spread between the two sets of values between g = 10
and g = 40—consistent across all projects—suggests a substantial
amount of incidental similarity. When the two sets of measurements
finally meet at higher levels of granularity, they have converged on
the (comparatively rare) intentional copies—the code clones.
Controls for Trivial Redundancy The root causes of redundancy
are important; trivial cases like full file copies and intentional code
clones are uninteresting, as our goal is to study the intuitive idea of
incidental similarity in source code. In addition to the information
provided by the two abstraction levels, we implemented a small
assortment of other controls for trivial redundancy. Though more
properly described with our methodology, we believe the current
context provides more intuition. We developed these controls after
earlier exploratory experiments with a (much less scalable) version
of our platform that provided full traceability information for every
match.

First, for the Java language, we do not measure the initial segment
of every source file that contains import statements, which control
namespace resolution. Similarly, for C and C++, we ignore the
standard string of #include directives and using statements at
the start of each file, and we ignore all header files, which usually
only contain declarations. Our focus is on studying the semantics-
affecting, intentional aspects of programming, and these controls
allow us shift focus from the most egregiously spurious, structurally
induced matches.

Second, for all languages, we do not allow matches from dupli-
cated files (determined by content) or files with identical file names.
The latter—somewhat aggressive—filter allows us to conservatively
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Figure 4: Syntactic Redundancy of Sourceforge Projects. The dependent variable is the percentage of syntactically redundant tokens.

153



control for the cases in which copied files are very slightly adapted
(e.g. a copyright header) or are of different but similar versions. Be-
fore adding this filter, we did measure its potential effect: in all
cases, it reduces the relative size of the corpus (with respect to a
single project) by less than one percent.
Outliers The plot of npp follows the standard trend, but it converges
on a much higher value of redundancy. Upon investigation, we noted
that over half of the project’s source code consists of generated lexers
used for syntax highlighting, which at least one project in the corpus
undoubtedly contains as well. Other interesting projects included
atlas and hugin, with the former showing an abnormally steep
drop off in redundancy and the latter having an exceptionally low
redundancy value at low levels of granularity. We do not have a
complete explanation for these phenomena, but we hypothesize that
they are a result of the projects’ specialized domains (linear algebra
solving and panoramic photo stitching, respectively).

One minor effect is exhibited in a minority of the graphs: at very
low levels of granularity, slightly increasing granularity counterintu-
itively increases redundancy. This is an artifact of our methodology:
at a given level of granularity g, only files with at least one g-sized se-
quence are counted as part of the project. We could have formulated
our measurements either way, either including or excluding tiny files,
but in any case, the effect is negligible: these files generally only
contain between 0–1.5% of any given project’s code.

In summary, we observe a substantial amount of incidental similar-
ity between these projects and our corpus. The bulk of the syntactic
redundancy is exhibited at significant, but still fairly low, levels of
granularity: 6 to 40 tokens, or approximately one to seven lines of
code.

4.3 Breadth: Corpus Projects
Our breadth experiments involve calculating estimated syntactic

redundancy values for all 6,000 of our corpus projects. Summary
statistics of the results appear in Table 4, and we have included
density plots of the distributions of these values, overlaid for each
language, in Figure 5. In this section, we restrict the language of our
observations to general and qualified terms: other than basic summa-
rization, these data are ‘raw,’ and we have not formally formulated/
tested any hypotheses, and we have not performed any statistical
tests. Here, our primary contribution is in the collection of a vast
amount of previously unknown (or perhaps unattainable) data; our
interpretations are secondary and are suggestions of general trends.

At g = 6, approximately one line of code (shown Figure 5a),
the projects are nearly wholly redundant when measured under
abstraction, and their values of syntactic redundancy are over half
when measured using no abstraction at all. All three languages
are apparently in agreement, which suggests the possibility that
individual lines of code are not unique.

The next level of granularity, g = 20 (Figure 5b) is more interest-
ing. In our depth experiments, this level of granularity falls in the
center of the range of values at which we observe a high redundancy
values. On the whole, these aggregate redundancy measures are es-
sentially in agreement with the individual values for our SourceForge
experiments, but the individual languages are less in agreement with
each other: the suggestion of a general trend is still there, but we
observe more variation. The Java projects, for example, appear
to have a generally higher level of redundancy, while the C and
C++ measurements are much closer to each other in value. Once
again, we observe a substantial and consistent spread between the
abstracted and non-abstracted measurements, suggesting a general
trend of incidental similarity.

At g = 35 (Figure 5c), our observations are again in line with
our depth experiments: we observe generally more uniqueness (i.e.,

Median Syntactic Redundancy (%)
Max Hamming Dist:

g Abstraction 0 1 2 3 4

C

6 None 63.3 74.8 88.4 96.7 99.9
Renamed IDs 98.3 98.7 99.0 99.6 99.9

20 None 7.8 14.0 23.6 34.8 49.9
Renamed IDs 59.5 79.6 90.8 96.1 98.5

35 None 4.1 5.5 7.2 9.1 11.1
Renamed IDs 14.8 19.5 25.0 30.8 37.3

77 None 2.0 2.4 2.7 3.1 3.4
Renamed IDs 4.5 5.0 5.6 6.0 6.5

120 None 1.4 1.6 1.8 1.9 2.0
Renamed IDs 2.7 2.9 3.1 3.2 3.4

C++

6 None 54.5 68.9 84.8 95.8 99.8
Renamed IDs 97.9 98.5 99.2 99.8 100.0

20 None 3.2 7.8 15.1 25.2 39.3
Renamed IDs 48.1 68.2 83.6 92.4 96.9

35 None 0.9 1.5 2.4 3.6 5.3
Renamed IDs 9.8 13.3 18.0 22.4 27.8

77 None 0.1 0.3 0.3 0.5 0.6
Renamed IDs 1.6 1.8 2.1 2.3 2.6

120 None 0.0 0.0 0.1 0.1 0.1
Renamed IDs 0.7 0.8 0.9 0.9 1.0

Java

6 None 69.5 81.0 92.9 98.5 99.9
Renamed IDs 98.2 98.5 98.8 99.5 99.9

20 None 9.6 18.1 30.5 45.9 63.5
Renamed IDs 72.2 88.1 95.4 98.1 99.2

35 None 3.9 5.6 8.0 10.8 14.1
Renamed IDs 23.0 30.4 39.7 48.5 56.5

77 None 1.8 2.2 2.6 2.9 3.3
Renamed IDs 4.9 5.3 5.9 6.4 7.0

120 None 1.3 1.5 1.7 1.8 1.9
Renamed IDs 2.6 2.9 3.1 3.3 3.5

Table 4: Median syntactic redundancy values for the 6,000 corpus
projects.

less redundancy), and the spread between the abstracted and non-
abstracted measurements significantly narrows. At g = 77 (Fig-
ure 5d) and 120 (no figure, but displayed in Table 4), we observe
near-total uniqueness, and we also observe a potential broad-scale
confirmation of the phenomenon of the redundancy measures con-
verging on the more rare, intentionally copied code fragments:
both the abstracted and non-abstracted distributions appear centered
around similar values.

Across all runs, our measurements are in agreement with our
depth experiments: redundancy is near total at the line level and
remains significant through the range of approximately one to six
lines.

5. THREATS TO VALIDITY
Threats to the validity of our study fall under two main categories:

construct validity and external validity.
Construct Validity The construct validity of our study rests on
our ability to accurately measure ‘true’ syntactic redundancy, a
measure that we have approximated concretely in terms of a corpus
in the hope that it provides an accurate estimation of the same value
computed for ‘all code in existence.’

Here, the most obvious threat is that our corpus is insufficiently
large or varied, leading us to potentially underreport redundancy.
We believe this to be unlikely: the corpus is highly diverse, and we
report quite similar measurements for all three languages, despite
the fact that the majority of the Java and C/C++ portions of corpus
are derived from wholly different sources.
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(c) Granularity = 35 Tokens. Left: Exact matches. Middle: Hamming Dist. ≤ 1. Right: Hamming Dist. ≤ 2
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(d) Granularity = 77 Tokens. Left: Exact matches. Middle: Hamming Dist. ≤ 1. Right: Hamming Dist. ≤ 2

Figure 5: Density plots of the distribution of syntactic redundancy values for 6,000 corpus projects.

We also performed a small experiment to provide (limited) evi-
dence of the sufficiency of our corpus, the results of which appear
in Figure 6. In this experiment, we fix all our standard experimental
variables: a single project (freecol), a single level of granularity
(20) and abstraction (renamed identifiers), and, for simplicity, exact
matches only. We instead vary the size of the corpus through sam-
pling: we first compute syntactic redundancy with respect to a sam-
pled corpus of approximately 1,000 files. We then repeatedly double
the size of the corpus and remeasure until we reach the original
size, 600,000 files. As expected, the syntactic redundancy increases
monotonically, but the growth rate is highly variable, strong at first
but trailing off dramatically before even half the corpus has been
sampled. Though only a single data point, this experiment suggests
that increasing the scope of our corpus may not yield substantially
different measurements.

There are also potential threats due to errors in our implementa-
tion. We did utilize end-to-end regression testing throughout our
platform’s development and optimization, however, and we are con-
fident our measurements. In addition, we are willing to release our
implementation on request (and all raw data, for that matter) for
inspection and/or replication.
External Validity The general trends apparent in our depth ex-
periments may not generalize to most or all software. Our breadth
experiments over 6,000 projects do help in confirming a general
trend, but there is a potential threat from platform homogeneity: our

corpus, which comprised the set of target projects in the ‘breadth’
experiments, is composed completely of open source Linux software.
However, we believe that this threat is mitigated by the abundance
of cross-platform software and the fact that only a small fraction of
code in high-level languages is likely to be truly platform-specific.
In addition, a selection of our SourceForge projects are actually
Windows-only projects, and our measurements for these projects
are consistent with the rest despite being measured against a Linux-
based corpus.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we present the first study of the uniqueness of source

code. We have formulated a precise and intuitive methodology for
measuring this value, which we call syntactic redundancy. We
compute this value precisely for 30 assorted SourceForge projects
and approximately—but with known error margins and confidence—
for 6,000 other projects. Our experiments, covering 430 million
lines of source code and consuming approximately four months
of CPU time, revealed a general lack of uniqueness in software at
levels of granularity equivalent to approximately one to seven lines
of source code. This phenomenon appears to be pervasive, crossing
both project and programming language boundaries.

Our most immediate line of future work is the exploration of the
practical ramifications of our findings. We are most interested in
the consequences of this study on genetic programming, which we
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Figure 6: The syntactic redundancy of freecol with respect to
sampled subsets of our corpus.

remarked on earlier: a fitness function that ensures that a proposed
program ‘looks like software should look’ could greatly improve
the performance of these systems, possibly making many problems
tractable for the first time.

We are also interested in repeating our study with different targets
and/or corpora. When retrieving the ‘depth’ targets from Source-
Forge, we were encouraged by the fact that our chosen languages—
C, C++, and Java—dominated the list of the most active projects.
However, web languages—PHP in particular—came in a close
fourth. Repeating our study for this and other non-C-like languages
may yield quite different results. We would also like to scan and
tabulate commercial code as well, though we doubt the results would
be significantly different.

A natural complement to our quantitative line of work is a thor-
ough investigation into the qualitative aspects of syntactic redun-
dancy. For example, it may be the case that a particular set of com-
mon sequences—software ‘genes’—dominate the results, which
could drive tool support. Earlier versions of our measurement in-
frastructure did allow for the full tracing of every match, but we
ultimately had to drop this feature in favor of scalability. As fu-
ture work, we intend to explore methods of reinstating this feature
without compromising our ability to scan large amounts of source
code.
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