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ABSTRACT
In continuous integration development environments, software en-
gineers frequently integrate new or changed code with the main-
line codebase. This can reduce the amount of code rework that is
needed as systems evolve and speed up development time. While
continuous integration processes traditionally require that extensive
testing be performed following the actual submission of code to
the codebase, it is also important to ensure that enough testing is
performed prior to code submission to avoid breaking builds and
delaying the fast feedback that makes continuous integration de-
sirable. In this work, we present algorithms that make continu-
ous integration processes more cost-effective. In an initial pre-
submit phase of testing, developers specify modules to be tested,
and we use regression test selection techniques to select a subset of
the test suites for those modules that render that phase more cost-
effective. In a subsequent post-submit phase of testing, where de-
pendent modules as well as changed modules are tested, we use test
case prioritization techniques to ensure that failures are reported
more quickly. In both cases, the techniques we utilize are novel,
involving algorithms that are relatively inexpensive and do not rely
on code coverage information – two requirements for conducting
testing cost-effectively in this context. To evaluate our approach,
we conducted an empirical study on a large data set from Google
that we make publicly available. The results of our study show that
our selection and prioritization techniques can each lead to cost-
effectiveness improvements in the continuous integration process.
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1. INTRODUCTION
In continuous integration development environments, engineers

merge code that is under development or maintenance with the
mainline codebase at frequent time intervals [8, 13]. Merged code
is then regression tested to help ensure that the codebase remains
stable and that continuing engineering efforts can be performed
more reliably. This approach is advantageous because it can re-
duce the amount of code rework that is needed in later phases of
development, and speed up overall development time. As a result,
increasingly, organizations that create software are using contin-
uous integration processes to improve their product development,
and tools for supporting these processes are increasingly common
(e.g., [3, 17, 29]).

There are several challenges inherent in supporting continuous
integration development environments. Developers must conform
to the expectation that they will commit changes frequently, typi-
cally at a minimum of once per day, but usually more often. Version
control systems must support atomic commits, in which sets of re-
lated changes are treated as a single commit operation, to prevent
builds from being attempted on partial commits. Testing must be
automated and test infrastructure must be robust enough to continue
to function in the presence of significant levels of code churn.

The challenges facing continuous integration do not end there. In
continuous integration development environments, testing must be
conducted cost-effectively, and organizations can address this need
in various ways. When code submitted to the codebase needs to be
tested, organizations can restrict the test cases that must be executed
to those that are most capable of providing useful information by,
for example, using dependency analysis to determine test cases that
are potentially affected by changes. By structuring builds in such a
way that they can be performed concurrently on different portions
of a system’s code (e.g., modules or sub-systems), organizations
can focus on testing changes related to specific portions of code
and then conduct the testing of those portions in parallel. In this
paper, we refer to this type of testing, performed following code
submission, as “post-submit testing”.

Post-submit testing can still be inordinately expensive, because it
focuses on large amounts of dependent code. It can also involve rel-
atively large numbers of other modules which, themselves, are un-
dergoing code churn, and may fail to function for reasons other than
those involving integration with modules of direct concern. Organi-
zations interested in continuous integration have thus learned, and
other researchers have noted [35], that it is essential that developers
first test their code prior to submission, to detect as many integra-
tion errors as possible before they can enter the codebase, break
builds, and delay the fast feedback that makes continuous integra-
tion desirable. Organizations thus require developers to conduct
some initial testing of new or changed modules prior to submitting



those modules to the codebase and subsequent post-submit test-
ing [13]. In this paper, we refer to this pre-submission phase of
testing as “pre-submit testing”.

Despite efforts such as the foregoing, continuous integration de-
velopment environments face further problems-of-scale as systems
grow larger and engineering teams make changes more frequently.
Even when organizations utilize farms of servers to run tests in par-
allel, or execute tests “in the cloud”, test suites tend to expand to
utilize all available resources, and then continue to expand beyond
that. Developers, preferring not to break builds, may over-rely on
pre-submit testing, causing that testing to consume excessive re-
sources and become a bottleneck. At the same time, test suites
requiring execution during more rigorous post-submit testing may
expand, requiring substantial machine resources to perform testing
quickly enough to be useful for the developers.

In response to these problems, we have been investigating strate-
gies for applying regression testing in continuous integration de-
velopment environments more cost-effectively. We have created an
approach that relies on two well-researched tactics for improving
the cost-effectiveness of regression testing – regression test selec-
tion (RTS) and test case prioritization (TCP). RTS techniques at-
tempt to select test cases that are important to execute, and TCP
techniques attempt to put test cases in useful orders (Section 2 pro-
vides details). In the continuous integration context, however, tra-
ditional RTS and TCP techniques are difficult to apply. Traditional
techniques tend to rely on code instrumentation and be applicable
only to discrete, complete sets of test cases. In continuous inte-
gration, however, testing requests arrive at frequent intervals, ren-
dering techniques that require significant analysis time overly ex-
pensive, and rendering techniques that must be applied to complete
sets of test cases overly constrained. Furthermore, the degree of
code churn caused by continuous integration quickly renders data
gathered by code instrumentation imprecise or even obsolete.

In this work, therefore, we utilize new RTS and TCP techniques.
We have created RTS techniques that use time windows to track
how recently test suites1 have been executed and revealed failures,
to select test suites to be applied during pre-submit testing. We
then utilize TCP techniques based on such windows to prioritize
test suites that must be performed during subsequent post-submit
testing. The approaches we utilize can be applied to individual test
suites as their execution is requested. They also utilize relatively
lightweight analysis, and do not require code instrumentation, ren-
dering them appropriate for use within the continuous integration
process.

To evaluate our approach, we conducted an empirical study on
a large data set obtained from Google – a data set that allows us
to simulate and track the results of various regression testing ap-
proaches on a substantial codebase. The results of our study show
that our RTS technique can greatly improve the cost-effectiveness
of pre-submit testing; that is, it produced large reductions in test
case execution costs, while deferring relatively few faults to post-
submit testing. We also find that our TCP technique can substan-
tially reduce the time required to provide feedback on failing test
cases during post-submit testing, allowing developers to address
problems more quickly. Thus, overall, our techniques contribute
directly to the goals of the continuous integration process.

1Traditionally, RTS and TCP techniques have been applied to test
cases. In this work we apply them to test suites, primarily because
the datasets we use to study our approach include test suites, and
analysis at the test suite level is more efficient. The approaches
could also, however, be performed at the level of test cases.

In summary, the contributions of this work are:
• A characterization of how regression testing is performed in

a continuous integration development environment and the
identification of key challenges faced by that practice that
cannot be addressed with existing techniques.

• A definition and assessment of new regression testing tech-
niques tailored to operate in continuous integration develop-
ment environments. The insight underlying these techniques
is that past test results can serve as lightweight and effective
predictors of future test results.

• A sanitized dataset collected at Google, who supported and
helped sponsor this effort, containing over 3.5M records of
test suite executions. This dataset provides a glimpse into
what fast and large scale software development environments
are, and also lets us assess the proposed techniques while
Google is investigating how to integrate them into their over-
all development workflow.

The remainder of this paper is organized as follows. Section 2
provides background and related work. Section 3 discusses the con-
tinuous integration process used at Google, and the Google dataset
we use in the evaluation. Section 4 presents our RTS and TCP
techniques. Section 5 presents the design and results of our study.
Section 6 discusses the findings and Section 7 concludes.

2. BACKGROUND AND RELATED WORK
Let P be a program, let P ′ be a modified version of P , and let T

be a test suite for P . Regression testing is concerned with validat-
ing P ′. To facilitate this, engineers often begin by reusing T , but
reusing all of T (the retest-all approach) can be inordinately ex-
pensive. Thus, a wide variety of approaches have been developed
for rendering reuse more cost-effective via regression test selec-
tion (e.g., [4, 22, 24, 31]) and test case prioritization (e.g., [7, 10,
25, 27, 28, 34]). Yoo and Harman [33] provide a recent survey.

Regression test selection (RTS) techniques select, from test suite
T , a subset T ′ that contains test cases that are important to re-run.
When certain conditions are met, RTS techniques can be safe; i.e.,
they will not omit test cases which, if executed on P ′, would reveal
faults in P ′ due to code modifications [23].

Test case prioritization (TCP) techniques reorder the test cases
in T such that testing objectives can be met more quickly. One po-
tential objective involves revealing faults, and TCP techniques have
been shown to be capable of revealing faults more quickly [11].

Because TCP techniques do not themselves discard test cases,
they can avoid the drawbacks that can occur when regression test
selection cannot achieve safety. Alternatively, in cases where dis-
carding test cases is acceptable, test case prioritization can be used
in conjunction with regression test selection to prioritize the test
cases in the selected test suite. Further, test case prioritization can
increase the likelihood that, if regression testing activities are un-
expectedly terminated, testing time will have been spent more ben-
eficially than if test cases were not prioritized.

A key insight behind most of the RTS and TCP techniques stud-
ied to date is that certain testing-related tasks (such as gathering
code coverage data) can be performed in the “preliminary period”
of testing, before changes to a new version are complete. The infor-
mation derived from these tasks can then be used during the “criti-
cal period” of testing after changes are complete and when time is
more limited. This insight, however, applies only in cases where
sufficiently long preliminary periods are available, and this is not
typically the case in continuous integration development environ-
ments.



While most work on regression testing has focused on develop-
ment processes that fit the foregoing description, there has been
some work considering more incremental processes. Do et al. [6]
study test case prioritization in the presence of time constraints
such as those that arise when faster development-and-test cycles
are used. Walcott et al. [30], Zhang et al. [36], and Alspaugh et
al. [1] present prioritization techniques that operate in the presence
of time constraints. This work, however, does not specifically con-
sider continuous integration processes.

There has been some recent work on techniques for testing pro-
grams on large farms of test servers or in the cloud (e.g., [5, 20,
28]). This work, however, does not specifically consider continu-
ous integration processes or regression testing.

A few pieces of work do address continuous integration and test-
ing. Saff and Ernst [26] consider a form of continuous testing in
which regression tests are run continuously as developers write
code. This work, however, focuses on testing during the devel-
opment effort itself, not at the testing periods typically utilized in
continuous integration processes. Jiang et al. [18] consider con-
tinuous integration environments, and discuss the use of test case
prioritization following code commits to help organizations reveal
failures faster, but their work focuses on the ability to use the fail-
ures thus revealed in statistical fault localization techniques. Kim
and Porter [19] use history data on test cases to prioritize them, as
do we, but they do not consider the continuous integration process.
In the work most closely related to ours, Marijan et al. [21] briefly
present a prioritization algorithm for continuous regression testing.
The algorithm also utilizes the time since the last test cases failed,
but does not consider the notions of an execution or a prioritization
window, and it assumes a limit on time allotted for test execution.

In the work most closely related to ours, Yoo et al. [35], also
working with Google data sets, describe a search-based approach
for using TCP techniques to help developers perform pre-submit
testing more cost-effectively. Their study of the approach, while
modest in scale, does suggest that it can function cost-effectively
in the Google context. They do not, however, consider the use of
RTS techniques, or consider the application of their technique to
post-submit testing.

3. REGRESSION TESTING AT GOOGLE
Continuous integration development environments are employed

by various organizations in various forms. Because we are familiar
with the use of continuous integration at Google, and because we
have access to a large collection of data relevant to the processes
employed there, we describe the ways in which continuous integra-
tion is used there, in relation to other important aspects of testing.
Note that our description, which is based on materials available
at [15], is necessarily somewhat simplified, but is sufficient to sup-
port the presentation of our approach and of our empirical study.
In Section 6, we provide further discussion of several complexities
that arise when continuous integration is employed in practice.

Google’s developers create test suites utilizing specialized XUnit-
like frameworks (e.g., the Google C++ Testing Framework [14]),
and extensive execution and monitoring support. This holds for
test cases at the unit, integration, and system levels. In this con-
text, test cases are composed of both inputs and oracles, and thus
most test execution and oracle checking is automated. (There are
exceptions such as tests that require human judgment, but they are
relatively infrequent.) This enables the execution of test suites on
a common test suite execution infrastructure that can leverage the
massive computational power of server farms or the cloud to obtain
test results faster.

While developers create the test suites used at Google, an inde-
pendent Test Infrastructure Team manages the infrastructure used
in testing, and takes steps necessary to support fully automated test
execution. One element of this effort involves keeping track of de-
pendencies between code modules;2 this supports efforts to focus
testing resources on changed and dependent modules during post-
submit testing (as suggested in Section 1) [16]. Given the scale of
testing requirements, Google’s test execution infrastructure oper-
ates at the level of entire test suites.

Google’s process includes both pre-submit and post-submit test-
ing as described in Section 1. When a developer completes their
coding activities on a module M , the developer presents M for pre-
submit testing. In this phase, the developer provides a change list
that indicates modules directly relevant to building or testing M .
Pre-submit testing requests are queued for processing and the test
infrastructure performs them as resources become available; this
testing includes, to different extents, the execution of all test suites
relevant to all of the modules listed in the change list. If failures are
encountered, the developer is informed and must correct the faults
responsible and repeat the process.

When pre-submit testing succeeds for M , a developer submits
M to source code control, a process that causes it to be considered
for post-submit testing. At this point, tools are used to determine,
using module dependency graphs, modules that are globally rele-
vant to M . This includes modules on which M depends as well as
modules that depend on M . (The dependence analysis relied on in
this step is coarse, and the dependencies calculated often form an
over-approximation – this is necessary in order to ensure that the
process is sufficiently fast [16].) All of the test suites relevant to
these modules are queued for processing.

The foregoing processes also apply to new code. New mod-
ules are submitted for pre-submit testing with change lists along
with new test suites. New modules are then submitted to source
code control and subsequent post-submit testing, where their de-
pendence information is calculated and used to conduct testing of
dependent modules.

The Google Shared Dataset of Test Suite Results. In
conducting this work, we have been able not only to use real in-
dustry data, but also to sanitize and package a large dataset of test
suite execution results, that Google has willingly made available
for use by the software engineering research community [12]. It is
this data that we rely on in evaluating the techniques presented in
this paper, and because this data also helps illustrate the continuous
integration process, we present basic information on it here.

The Google Shared Dataset of Test Suite Results (GSDTSR)
contains information on a sample of over 3.5 million test suite
executions, gathered over a period of 30 days, applied to a sam-
ple of Google products. The dataset includes information such
as anonymized test suite identifiers, change requests, phases (pre-
submit and post-submit) at which test suites were executed, out-
come statuses of test suite executions, and time required to execute
test suites. (Note, however, that the dataset contains only a small
sample of observations relative to to the entire pantheon of obser-
vations that could be accrued at Google.)

Table 1 provides data on the test suites in GSDTSR, focusing on
the relative sizes of test suites utilized in the two phases, the per-
centages of these test suites that have been observed across each
phase and size, and the percentages of test suite executions that

2We use the term “code modules” in this paper for simplicity, to re-
fer to any element of the codebase that can be modified and passed
to a build process, as well as larger code units for which the build
processes involve multiple independently built modules.
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Figure 1: Flow of Incoming Test Suites for Pre-Submit Testing over Three Days.

failed. Size classifications of test suites are meant to serve as qual-
itative indicators of their scope and of the resources required to
execute them [32]. In general, “Small” test suites are those that fo-
cus on a class, “Medium” test suites are those that target a class and
its neighboring classes, and “Large” test suites are those that most
closely represent field scenarios. Additionally, with each size there
are also rules that enforce duration and resource usage limits.

Table 1: Google Dataset: Distribution of Test Suite Executions
per Testing Phase and Test Suite Size

Phase Size % Total % Failing
pre-submit Small 26 0.02
pre-submit Medium 10 0.13
pre-submit Large 6 0.27
post-submit Small 35 0.01
post-submit Medium 13 0.32
post-submit Large 10 0.65

Table 2 provides a different view of the test suites in GSDTSR,
showing the percentages of test suites of different sizes that exist
for each of the major programming languages utilized. This table
illustrates the diversity of languages that a large continuous build-
ing and testing process must accommodate, and how the language
choice varies depending on the testing scope.

Table 2: Google Dataset: Distribution of Test Suite Executions
per Language across Test Suite Sizes

Language % Total Small Medium Large
Config 0.1 0 0.3 0.1
C 39.2 33.7 66.8 20.9
GO 0.4 0.2 0.9 0
GWT 0 0 0 0.2
Java 7.2 6 7.1 11.5
Python 7.7 7.8 9.8 4.7
Shell 41.9 52.1 14.1 42.9
WEB 3.6 0.1 1.1 19.6

To further illustrate the type of information present in GSDTSR,
as well as to further illustrate the effects that continuous integration
has on test suite execution at Google, Figure 1 presents data on test
suites executed during pre-submit testing over a three day period.
The horizontal axis depicts hourly time periods (labels correspond
GMT); the vertical axis depicts the number of test suite executions
occurring. Note that requests for test executions arrive continu-
ously – this is because engineers are working in various locations

around the globe. The heaviest periods of test execution, however,
occur in the time periods corresponding to lunch time in Moun-
tain View, California, where engineers tend to submit modules for
testing prior to taking their breaks.

4. APPROACH
The foregoing process, employed in a continuous integration con-

text, has many advantages. Frequent system builds and regression
testing of new and changed modules ensure faster feedback on po-
tential problems. Post-submit testing reduces the number of prob-
lems that slip through into the codebase and affect future builds,
while pre-submit testing helps prevent an excess of problems dur-
ing post-submit testing.

The process also faces other challenges. As noted in Section 1,
these include developers listing too many or too few modules on
change lists, resulting in bottlenecks in testing, or excessive faults
being left undetected until post-submit testing. Furthermore, even
when executing test suites on larger server farms or in the cloud,
the rapid pace at which code is changed and submitted for testing
in either phase, and the sheer numbers of changes being made by
developers, can lead to bottlenecks in either testing phase.

We now describe two approaches that we use to address these
challenges, involving regression test selection (RTS) and test case
prioritization (TCP) techniques.

4.1 Continuous Regression Test Selection
A natural question that arises in the context of pre-submit testing

is whether RTS techniques can be used to select a subset of the
test suites related to the modules listed in a change list, rendering
that testing more cost-effective without unduly harming the overall
(pre-submit together with post-submit) testing process.

As noted in Section 2, a wide range of RTS techniques have
been developed and studied, and could potentially be applied in
this context. In practice, however, existing techniques will not suf-
fice. Google’s codebase undergoes tens of changes per minute [16].
Most existing RTS techniques utilize instrumentation to track the
code executed by test cases, and then analyze code changes and
relate them to these test executions. The rate of code churn in the
Google codebase, however, is quite large, and this can cause code
instrumentation results to quickly become inaccurate. In such situ-
ations, keeping coverage data up to date is not feasible [9].

We therefore sought an alternative approach. It has long been
suggested, in the testing literature, that some test cases (or test
suites) are inherently better than others at revealing failures [19].
In an evolving system, test suites that have failed in a recent ver-



sion are in some ways “proxies” for code change – they target code
that is churning. We conjectured that an RTS approach that selects
test suites based on some “failure window” might be cost-effective
in pre-submit testing.

The foregoing approach also has the effect of ignoring test suites
that have not, in recent builds, revealed faults. We conjecture that
doing this should have relatively minor deleterious effects initially,
but in time, as test suites are repeatedly ignored, the effectiveness
of regression testing might be reduced. Thus, a second issue to con-
sider when selecting test suites for execution in pre-submit testing
involves the use of some “execution window”, where test suites not
executed within that window are also selected.

A third issue in regression testing relates not to existing test
suites, but to new test suites created to exercise new or modified
system code or functionality. Such test suites are clear candidates
for execution in pre-submit testing on a modified system version.

The foregoing issues provide motivation for Algorithm 1, Select-
PRETests. To help explain the algorithm we provide Figure 2. In
the figure, each rectangle represents a set of test suites that have
been submitted for execution. The grey rectangle in the figure rep-
resents a set of test suites at the point at which they are about to be
considered for execution. Rectangles to the right of the grey rectan-
gle represent sets of test suites that have been executed in the past,
from most recently executed to least recently moving from left to
right. Rectangles to the left of the grey rectangle represent sets of
test suites that have been queued for future execution, from most
recently queued to least recently moving from left to right. (Test
suites queued for future execution are not considered in Algorithm
1, we include them in the figure because we consider them in our
second algorithm, discussed in Section 4.2.) Let Wf be a failure
window and let We be an execution window, as discussed above.
In practice, Wf and We can indicate lengths of time, or numbers
of test suites executed – in this work we rely on the former. The
figure depicts Wf and We projected over the sets of test suites that
have been executed in the past.

Let T be the set of test suites for modules submitted by a devel-
oper or required by a developer, at the point at which they are about
to be considered (again, test suites represented by the grey rectan-
gle in Figure 2). SelectPRETests selects from T , for execution, all
test suites that (1) have been observed to fail within window Wf ,
(2) have not been executed within window We, or (3) are new. Note
that in the case of Algorithm 1, failure and execution windows for
test suites are assessed relative to both prior pre-submit and prior
post-submit testing results.

Algorithm 1 SelectPRETests

Parameters:
Test Suites T ,
Failure window Wf ,
Execution window We

for all Ti ∈ T do
if T imeSinceLastFailure(Ti) ≤Wf or

T imeSinceLastExecution(Ti) > We or
Ti is new then

T ′ ← T ′ ∪ Ti

end if
end for
return T ′

4.2 Continuous Test Suite Prioritization
Algorithm SelectPRETests is meant to reduce testing effort in

pre-submit testing, while preserving much of its effectiveness, and
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Figure 2: Test Suite Execution Windows

the extent to which it may do so needs to be studied empirically.
However, SelectPRETests can have a secondary effect: it can shift
the execution of failing test suites from pre-submit testing to post-
submit testing. Skipping passing test suites during pre-submit test-
ing does not cause an extra load during post-submit testing as they
will be executed then anyway. Test suites that would have failed
during pre-submit testing are skipped, however, can cause delays
in failure finding that may slow down development.

Thus, we wished to find an approach by which to reduce such
delays in post-submit testing. To do this, we looked to test pri-
oritization. Just as test suites selected for pre-submit testing can
be selected based on failure and execution windows, so also the
test suites that must be utilized in post-submit testing can be pri-
oritized based on those windows. We conjecture that by using this
approach, test suites that reveal failures can be executed earlier than
they otherwise would. Engineers can then use information on fail-
ures to determine whether to continue a system build, or to return
to the drawing board.

In the context of prioritization, however, there is one additional
issue to consider. Prioritization techniques have traditionally oper-
ated on entire sets of test cases or test suites. In continuous integra-
tion development environments, test suites arrive for post-submit
testing continuously, in relatively small batches or in bursts related
to code submits, and these test suites are placed in a dispatch queue.
(In Figure 2, this queue is represented by all of the rectangles to
the left of, and including, the grey rectangle). As resources become
available, test infrastructure removes test suites from this queue and
launches them.

Assigning priorities to test suites or small batches of suites as
they reach the dispatch queue may cause lower-priority test suites
to remain unexecuted for longer than desirable periods of time. It
may also cause test suites that have relatively similar behavior to
all be assigned high priorities and run earlier than other test suites
with dissimilar behavior, lowering the effectiveness of prioritiza-
tion. Finally, prioritizing test suites as they arrive is likely to focus
on test suites related to single submissions. We conjecture that a
vast majority of the test suites related to specific submissions do not
fail (since they were already validated by pre-submit testing), and
grouping all of the test suites related to a single submission ahead
of those related to later submissions may have the effect of queuing
a number of likely-to-pass test suites ahead of more-likely-to-fail
test suites.

To address these issues, as well as to gather data that might help
us evaluate whether the foregoing effects can be significant in prac-
tice, we rely on an additional form of window, referred to as a pri-
oritization window (Wp), and illustrated in Figure 2. Like We and
Wf , Wp can either be a number of test suites, or a time – in this
work we utilize time. As test suites arrive they are placed in the
dispatch queue, and when Wp has been exceeded, we prioritize the
test suites in the queue that have not yet been prioritized. In this
approach, setting Wp to 1 (if Wp is a number of test suites) or to a



time window less than that required by any test suite (if Wp is an
amount of time) is equivalent to not prioritizing.

Algorithm 2, PrioritizePOSTTests, performs the foregoing ac-
tions. PrioritizePOSTTests is triggered when prioritization window
Wp has been met, and operates on the set of test suites that has been
submitted for post-submit testing, denoted here by POSTQueue.
(Recall that these test suites include test suites for modules submit-
ted by developers to source code control, along with test suites for
all modules assessed to depend on, or be depended on by, the sub-
mitted modules.) Again, let Wf be a failure window and let We be
an execution window. Let Pp be a pointer to the last test suite in the
queue that was prioritized during the prior prioritization window.

Algorithm 2 PrioritizePOSTTests

Parameters:
POSTQueue,
Failure window Wf ,
Execution window We,
Starting point Pp in POSTQueue

for all Ti ∈ POSTQueue after Pp to lastEntry.POSTQueue do
if T imeSinceLastFailure(Ti) ≤Wf or

T imeSinceLastExecution(Ti) > We or
Ti is new then

Ti.Priority← 1
else

Ti.Priority← 2
end if

end for
SORTBYPRIORITY(POSTQueue, Pp, lastEntry.POSTQueue)
Pp = lastEntry.POSTQueue

PrioritizePOSTTests begins at location Pp in POSTQueue. The
algorithm considers each test suite Ti in the queue, from the suite
immediately after Pp to the end of the queue, and assigns a priority
to each of these test suites. Priority assignment involves apply-
ing a function that seeks to capture the relationship between the
test suite and We and Wf . There are various functions that might
be utilized, in our current implementation, we use a simple and
easy-to-compute function that assigns one of two priority levels, 1
(high) or 2 (low), to test suites, as follows. For each test suite T
that (1) has been observed to fail within window Wf , (2) has not
been executed within window We, or (3) is new, T is assigned pri-
ority level 1. All other test suites are assigned priority level 2. Note
that in the case of PrioritizePOSTTests, we consider failure and ex-
ecution data relative only to prior executions in post-submit testing,
for reasons discussed in Section 6. After all test suites have been
assigned priority levels, the algorithm sorts them such that higher
priority test suites appear first in the queue (beginning at point Pp).3

Finally, Pp is updated to the last prioritized test suite in the queue.
Note that, as defined, PrioritizePOSTTests assigns test suites to

priority levels in the order in which it extracts them from POSTQueue.
In theory, a secondary prioritization criterion might be applied to
the suites assigned to the two queues, at additional costs. For exam-
ple, traditional coverage-based prioritization techniques often ran-
domly sort test cases that are judged to have equivalent priorities;
other approaches apply secondary characteristics of tests. In this
work, we employ no such secondary criterion; thus, the orders in
which test cases are executed, within each priority level, are fully
deterministic.
3To simplify the presentation, we assume that access to the
POSTQueue or queue section to be sorted is atomic.

There are several factors that may affect the cost-effectiveness
of the foregoing approach. We have already discussed a few is-
sues related to the choice of Wp that suggest the use of a window
size promoting the prioritization of “batches” of test suites, rather
than of single test suites. Given that choice, however, other issues
arise. First, the rate at which test requests arrive, and the expense
of executing test suites, play a role, because together they deter-
mine the rate at which test suites accumulate and can be optimally
prioritized. Second, the resources available for test execution (i.e.,
machines on which to run test suites) also play a role. For example,
if the number of machines available for testing exceeds Wp, then
partitioning Wp test suites into high or low priority suites is not
likely to have any effect on testing outcomes, since all test suites
may then be executed at once. Third, the relationship between Wp,
Wf and We may play a role: if Wp is too close to Wf or We, then
prioritization may miss important information. We explore several
of these issues further in our empirical study; the other factors merit
further study as well.

5. EMPIRICAL STUDY
We wish to evaluate the cost-effectiveness of our approach, and

also to assess the effects that result from the use of different window
sizes. To do this we consider the two components of the approach
(RTS and TCP) independently; this is reasonable because each of
these components is used in a separate phase of testing, and in a
practical setting, an organization might choose to employ either or
both, depending on cost-effectiveness. As baseline approaches we
consider the case in which RTS and TCP techniques are not applied.
This yields the following research questions.
RQ1: How cost-effective is the RTS technique during pre-submit
testing, and how does its cost-effectiveness vary with different set-
tings of Wf and We?
RQ2: How cost-effective is the TCP technique during post-submit
testing, and how does its cost-effectiveness vary with different set-
tings of Wp?

5.1 Objects of Analysis
As objects of analysis, we use the Google Shared Dataset of Test

Suite Results (GSDTSR) described in Section 3. This dataset con-
tains a sample of the results of test suites executed by Google. The
dataset is provided as comma delimited file. The dataset includes a
summary of the data and a per field description [12].

5.2 Variables and Measures

5.2.1 Independent Variables
Our independent variables involve the techniques and windows

used. For RQ1 we employ three techniques: the technique pre-
sented in Section 4.1, which selects a subset of the test suites in the
change list for a module M , a baseline approach in which all test
suites in the change list are utilized, and a random RTS approach
that selects a percentage of test suites matching that of the proposed
approach to enable their comparison (averaged over 5 runs). We
utilize three execution window sizes, We = {1, 24, 48}, and nine
failure window sizes, Wf = {0.25, 0.5, 1, 2, 4, 12, 24, 48, 96},
each representing different numbers of hours.

For RQ2, we employ two techniques: the technique presented
in Section 4.2 and a baseline approach that does not prioritize test
suite execution. We arbitrarily fix Wf = 12 and We = 24, the
median values for those windows, and we explore seven values for
the prioritization window, representing different numbers of hours:
Wp = {0.1, 0.5, 1, 2, 4, 8, 12}.



5.2.2 Dependent Variables
As dependent variables, for RQ1, we measure the percentages

of test suites that are selected, the percentage of execution time re-
quired, and the percentages of failures detected by our technique,
relative to the percentages required or detected by the baseline tech-
nique. We do this for each combination of We and Wf .

For RQ2, we measure the time it takes for the test suites to ex-
hibit a failure. Note that this measure differs from the APFD mea-
sure typically used in studies of test case prioritization. APFD con-
siders cumulative fault detection over time, which is reasonable in
a situation in which batches of test cases are being employed, but
not as applicable in continuous integration environments where the
focus is on obtaining feedback on individual test suites.

5.3 Study Operation
To study the proposed techniques we implemented the algorithms

described in Section 4, using approximately 300 lines of Python.
We used the GSDTSR dataset to simulate a continuous testing en-
vironment. The simulation performs a walk through the data file,
assuming that the test suites are executed by the computing infras-
tructure at the time, for the duration, and with the result reported in
the dataset.

The SelectPRETests implementation utilizes the GSDTSR data,
a failure window size, and an execution window size, and reports
the number of test suites selected, the time required to execute those
suites, and the number of failures they detected. It does this by
reading each line in GSDTSR, determining whether the test suite
in the line would be executed given the failure and execution win-
dows, and updating the the latest failure and execution information
for the test suite. If the test suite is to be executed, the implemen-
tation updates the test suite counter, the test suite execution time
accumulator (with the time recorded in the line for that test suite),
and (if the test suite resulted in a failure) the failure accumulator.

PrioritizePOSTTests takes the same inputs plus a prioritization
window, and produces a list of test suites prioritized within each
specified window size. Our implementation of the technique op-
erates similar to our implementation of SelectPRETests, except for
the manipulation of a moving prioritization window.

Note that we apply regression test selection only to test suite
executions related to pre-submit testing and prioritization only to
data related to test suite executions related to post-submit testing
(see Table 1 for information on the sizes of those data sets).

5.4 Threats to Validity
Where external validity is concerned, we have applied our tech-

niques to an extensive dataset, but that dataset represents testing
processes conducted only in a small section of one industrial set-
ting. We have compared our techniques to baseline approaches in
which no RTS or TCP techniques are used, and compared our RTS
technique to an approach using random test selection, but we have
not considered other alternative RTS or TCP techniques from the
literature (although most would need significant changes to work
under the continuous integration settings we are intending to oper-
ate). We have utilized various window sizes, but have necessarily
limited our choices to a finite set of possible sizes. We have not
considered factors related to the availability of computing infras-
tructure, such as variance in numbers of platforms available for use
in testing. These threats must be addressed through further study.

Where internal validity is concerned, faults in the tools used to
simulate our techniques on the GSDTSR objects could cause prob-
lems in our results. To guard against these, we carefully tested our
tools against small portions of the dataset, on which results could
be verified. Further, we have not considered possible variations in

testing results that may occur when test results are inconsistent (see
the discussion of “Flaky Test Suites” in Section 6); such variations,
if present in large numbers, could potentially alter our results.

Where construct validity is concerned, our measures include costs
in terms of numbers of test suites executed and testing time, and ef-
fectiveness in terms of numbers of failing test suites detected. Other
factors, such as whether the failure is new, costs in engineer time,
and costs of delaying fault detection are not considered, and may
be relevant.

5.5 Results and Analysis
We now analyze the results of our study relative to each of our

research questions. Section 6 provides further discussion.

5.5.1 RQ1: Regression Test Selection
Results of applying the continuous RTS technique for the three

We sizes are depicted in Figures 3, 4, and 5. Each figure shows,
for each Wf (on the x-axis), the percentage of test suites selected,
their execution time, and the failures detected (which corresponds
to the set of failing test suites selected) compared with the baseline
case in which all test suites are run.

Across all three figures we observe similar trends. The numbers
of failing suites increase rapidly initially as Wf increases, and then
begin to level off at around Wf = 12. At that point the percentage
of failing test suites selected is at least three times greater than the
percentage of test suites selected for execution and the percentage
of test suite execution time. The gains, as measured by the detection
of failing test suites, reach between 70% and 80% when Wf = 96.
The other 20% to 30% of failing test suites were not selected for
execution by our algorithm as they were executed recently but did
not have a recent failure history. Random test suite selection with
the same number of test suites selected for execution performed
approximately six times worse in terms of failure detection. This
illustrates the ability of continuous RTS to substantially reduce the
testing load in pre-submit testing, at the cost of delaying the execu-
tion of a certain number (but much smaller percentage, relative to
the costs saved) of failing test suites to post-submit testing.

As expected, using larger values of We led to more aggressive
test suite selection. For example, for a failure window of Wf = 96
hours, the percentage of selected test suites decreases by almost
20% from We = 1 in Figure 3 to We = 48 in Figure 5. This is
because as We increases, the number of non-failing test suites that
fall within that window (and thus, that are not selected), increases.

Note that for lower values of Wf , the percentage of test suites
executed is greater than the percentage of time used for test execu-
tion, but this changes as Wf increases. For example, for We = 1,
for values of Wf less than 12, the percentage of test suites executed
is smaller than the percentage of time used, but above 12 the per-
centage of time is greater. The primary reason for this is that larger
test suites tend to have greater failure detection rates than smaller
test suites (see Table 1), and as Wf increases, greater numbers of
larger test suites are selected.

Overall, skipping tests during pre-submit testing ends up impos-
ing only a small additional load on post-submit testing. Assuming
that test suite execution failures rates are 0.5% (as in our dataset),
selecting 33% of the test suites (the maximum in our simulation,
for We = 1 and Wf = 96) implies that the test executions added
to post-submit testing form less than 0.17% of the pre-submit test-
ing load, and even a smaller percentage of the post-submit testing
load. However, delaying the execution of test suites that will fail
will cause an increase in the feedback latency to developers. This
is the challenge we address with prioritization within post-submit
testing, in the next section.
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Figure 3: Test Suite Selection: We = 1
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Figure 4: Test Suite Selection: We = 24
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Figure 5: Test Suite Selection: We = 48
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Figure 6: Sample of prioritization results for 25 failures

5.5.2 RQ2: Test Case Prioritization
Figure 6 presents a small sample of the results of applying test

suite prioritization with windows Wf = 12, We = 24, and Wp =
{0.1, 0.5, 1, 2, 4, 8, 12}. The x-axis corresponds to 25 of the more
than 5000 failing test suites, and the y-axis denotes the times at
which these test suites were executed. Thus, for example, the first
failure shown, number 5,857, is detected at hour 13,050 of testing
when test suites are prioritized with Wp = 2, and at hour 13,130 of
testing when test suites are not prioritized (Wp = 0). Although all
instances of prioritization techniques appear to perform better than
no-prioritization, this sample illustrates a fact evident across the
entire data set, namely, that there is large variance in prioritization
technique performance across window sizes. For some failures, this
difference can be measured in tens of hours.

To understand the trends in the data given this high level of vari-
ation, for each test suite execution resulting in a failure, we com-
puted the differences in detection time between each instantiation
of the prioritization technique and no-prioritization. This is equiv-
alent to the vertical distance, in Figure 6, between the value of each
technique and Wp = 0, at each failure point (for example, for
failure 5,857, the difference in detection time when Wp = 2 and
Wp = 0 is 80 hours). The results of this analysis are shown in Fig-
ure 7. We use a box-plot to show the distribution of the differences.
In the figure, a positive difference indicates that prioritization out-
performed the no-prioritization baseline. The x-axis corresponds to
the different values of Wp, and for each of these we show the cor-
responding median (thick black line within a box, with a number
next to it), the first and third quartiles (box bounds), the min and
max (whiskers), and the outliers (black circles).

Overall, we observe that all instantiations of the prioritization
technique perform better than no-prioritization. Increasing Wp led
to a greater number of requested test suite executions marked as
high priority (ranging from 5% to 8%) because larger windows
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Figure 7: Boxplots comparing prioritization techniques with
Wp = {0.1, 0.5, 1, 2, 4, 8, 12} against no-prioritization

meant more stale data. The techniques with the best median per-
formance, however, were also those that exhibited the greatest vari-
ation. For example, for the smallest window, Wp = 0.1, the me-
dian was 53 hours better than the median for no-prioritization, but
the second quartile begins at -1644 hours. The largest window
of Wp = 12 hours had a median of 40 hours but the third quar-
tile ended at 151 hours. The prioritization windows in between
Wp = 1 and Wp = 12 result in smaller medians and variances.
For Wp = 1, the median is the lowest at 11 hours and the second
and third quartiles end at 2 and 22, respectively. We conjecture that
given an overly small prioritization window, the prioritization algo-
rithm operates with only very recent data. In some cases, as when
there are many instances of the same test suite awaiting execution in
the pending queue, this may be detrimental as the prediction signal
may be overly strong. On the other hand, given too large a priori-
tization window, the prioritization algorithm may not have enough
recent test execution data to make good predictions about which
tests suites should be given higher priority.

6. DISCUSSION
In this section we summarize our findings, and discuss several

additional issues related to RTS and TCP techniques that must be
considered when operating in large and continuous integration de-
velopment environments.

Summary and Implications. Our results show that our continu-
ous RTS technique can lower the testing load in pre-submit testing.
In doing so it can delay the detection of faults, but it does so at
a far lower rate than its rate of savings in terms of testing execu-
tion cost. Since delayed test suites are eventually executed during
post-submit testing, delayed faults are still detected later; thus, this
process offers potential cost-benefit tradeoffs that can be benefi-
cial when pre-submit testing is acting as a bottleneck. Our results
also show that our continuous TCP technique can reduce delays
in fault detection during post-submit testing. Utilizing both tech-
niques together during continuous integration, then, can improve
the cost-effectiveness of the continuous integration process overall.

Our results also show that selections of window sizes We, Wf

and Wp affect the effectiveness of our algorithms. Organizations
will need to investigate the effects of choices of these parameters

in their particular process settings in order to determine what val-
ues to use. We also believe, however, that the parameters can be
dynamically tuned based on data gathered while testing is ongoing
– a process that fits well with the notion of continuous integration.
Further research is needed, however, to determine how such dy-
namic adjustments could be performed.

Integration of approaches at Google. Google, who supported and
partially sponsored this effort, is investigating how to integrate the
proposed techniques into their overall development workflow. One
challenge in that context is that, in spite of using the same testing
infrastructure, different teams have different tolerances for delaying
failure detection in pre-submit testing, or for changing the test suite
execution order in post-submit testing, due to their specific testing
and release practices. The proposed approaches simplify the prob-
lem by assuming that a single set of parameters is sufficient, but
clearly more sophisticated levels of configuration are necessary.

Reducing Test Execution Time vs. Delaying Failure Detection.
One of the impacts of utilizing continuous RTS in pre-submit test-
ing is the potential delay in detecting failing test suites until post-
submit testing. In practice, this chance of delay may be compen-
sated for by faster pre-submit test execution; however, organiza-
tions may wish to assess the tradeoffs more quantitatively.

To obtain an initial notion about what this delay may involve,
we further analyzed our data. Note that the cost of the delay de-
pends in part on the latency between pre-submit and post-submit
testing. For passing pre-submit test suites, the average latency be-
tween pre-submit and post-submit testing in the best case (compar-
ing only the last test suite execution in pre-submit testing to the first
in post-submit testing) is 1.2 hours, and in the worst case (compar-
ing only the last test suite execution in pre-submit testing to the last
in post-submit testing) is 2.5 hours. Clearly, this is just a coarse
approximation of the costs of delays in fault detection, and one that
accounts only for time. Future studies could evaluate this cost more
carefully, perhaps by employing RTS for only some of the systems
under test, while collecting not just failure result data but also fail-
ure detection latency.

Specifying Windows using Time versus Numbers of Events. As
noted in Section 4, our RTS and TCP techniques can be used with
window sizes specified in terms of time or numbers of events, where
an event can be, for example, a test suite execution. Our experience
indicates that specifying windows in terms of time is more intuitive
for managers of test execution pipelines, and this is one reason we
chose to use time. However, using numbers of events to define
window sizes would allow our techniques to adapt more readily to
fluctuations in the inflow of test execution requests.

We conjecture that such adaptability may be desirable in some
instances but not others. For example, setting an event-based win-
dow may be beneficial if test suites fail Friday afternoon when the
inflow of test suites slows down, such that the failing test suites
should be considered high priority on Monday morning even though
there is a large window of time in between. On the other hand,
when the inflow of test suites is high, an event-based window may
cause test suites utilized just minutes (but many hundreds of test
suites) ago to be discarded. We leave the comparison of different
specification mechanisms as future work.

Adding Pre-Submit Test Data to Post-Submit Prioritization. In
our study we used failure and execution data from previous post-
submit test suite executions to drive current post-submit test suite
prioritization. One could also consider including failure and execu-
tion data from pre-submit test executions to prioritize post-submit
testing. We investigated this possibility on our data set, and discov-



ered that the addition of pre-submit test data did not improve priori-
tization. For example, when prioritizing with Wf = 12, We = 24,
and Wp = 1 hours, the median gain in fault detection time for pri-
oritization with respect to no-prioritization was 11 with a variance
of 17 whether pre-submit test data was included or not. For the
same setting but with Wp = 12, the median gain in fault detection
time when using just post-submit test data was 40 and the variance
was 120, and when adding pre-submit test data the median was 34
and the variance was 118. We conjecture that the reason for this
lack of additional effectiveness may involve the different roles that
pre-submit test data plays in development. For example, it is rela-
tively common for developers to use pre-submit testing to explore
the robustness of a certain piece of code. Failure and execution data
collected through such explorations can mislead the prioritization
technique during post-submit testing, resulting in mixed effective-
ness gains.

Running on a Large Computing Infrastructure. When applied
at large scales, continuous integration processes often rely on large
computing infrastructure to increase execution efficiency, reducing
the amount of time required to provide feedback on test execution
to developers. The RTS and TCP techniques we propose, however,
are not cognizant of the capabilities of or the variability that can be
introduced by the underlying computing infrastructure. This means
that, for example, for a fixed Wf , a test suite that has previously
failed may or may not be selected for execution depending on how
quickly the infrastructure can schedule it to run.

The parameters provided by our techniques in terms of failure
and executions windows can help to compensate for some of the
variation in the computing infrastructure. Still, more resource-
cognizant techniques could identify ways to cluster and allocate
test suites more effectively. There is a clear a tension between de-
signing techniques that are general enough to be applicable to many
settings, and specialized enough to leverage the available compu-
tational resources. Development organizations operating with such
infrastructure must deal with such decisions frequently.

Evolving Test Suites. Test suites are not stagnant, they evolve with
code. Our algorithms give new test suites higher value, but they are
not cognizant of whether a test suite is obsolete or has changed.
Obsolete failing test suites are eventually removed or deprecated
by developers so we estimate that their influence in the overall test
suite selection or prioritization performance is going to be steady
but rather small. Obsolete passing suites will also have a steady ef-
fect on the algorithms depending primarily on the value of We, but
they do not seem to provide a clear and safe signal for our approach
to discard them automatically. Changed test suites, however, may
offer a refinement opportunity for our approach. Considering that
changes in test suites may be meant to validate new and potentially
faulty program behavior, and changes in suites may be faulty or
at least inconsistent with the software under test, it seems that the
act of changing in itself may be a valuable signal for triggering
test suite execution. Hence, a natural step in the evolution of the
proposed algorithms will be to consider the notion of a “test suite
change window”.

Dealing with Non-Deterministic Test Suites. Another interesting
side-effect of continuously running large numbers of test suites is
that there may be large numbers of test suites for which results are
inconsistent; these are often also referred to as “flaky test suites”.
Flaky test suites may fail intermittently without any variations oc-
curring in the module under test or in the test suite itself. In some
cases, the cause for this lies in the test suite design, due to failures
to check assumptions or control environmental factors. In other

cases, these variations may be so rare and difficult to control that
it may not be cost-effective for developers to address them. For
our RTS and TCP techniques to be effective, they must distinguish
between true failures and flaky failures, or risk the chance of ac-
tually magnifying the effect of flaky test suites by promoting their
execution. One common practice is to “deflake” failing test suites
by rerunning them (e.g., [2]) and computing a “flakiness index” for
each test suite in the process. We anticipate that this index could be
used as a threshold to determine whether a failing test suite should
be considered as such in a Wf .

7. CONCLUSION
Just as software integration has become a continuous process,

so has the testing performed during that process. Integration and
testing are increasingly intertwined as software moves closer to de-
ployment. This is why, to be cost-effective, regression testing tech-
niques must operate effectively within continuous integration de-
velopment environments. In this work we described the challenges
associated with performing regression testing under continuous in-
tegration, introduced two new regression testing techniques that use
readily available test suite execution history data to determine what
tests are worth executing and executing with higher priority, and
we shared a sanitized industry dataset with millions of test suite
executions that we used to assess the techniques presented.

We anticipate that follow up work will include the refinement
of RTS techniques under continuous integration and testing, par-
ticularly through the incorporation of other light-weight sources of
data. For example, we are exploring whether the transitions from
a pass to a failure during test suite execution may indicate a new
breakage (instead of ongoing broken modules) as this differentia-
tion may trigger different follow-up processes and toolsets. Sim-
ilarly, we would like to explore mechanisms for incorporating a
test suite “changed“ window and also for adjusting window sizes
dynamically so that we can consider more of the potential perfor-
mance factors we have identified. We will also extend our simula-
tion to use multiple test execution resources that better match the
“cloud” setting used to obtain the dataset. Last, we wish to ex-
tend our studies to other datasets and contexts to better understand
the limitations of RTS techniques as the scale of code and change
increases.
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