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ABSTRACT
Deployed software systems are typically composed of many
pieces, not all of which may have been created by the main
development team. Often, the provenance of included com-
ponents — such as external libraries or cloned source code
— is not clearly stated, and this uncertainty can introduce
technical and ethical concerns that make it difficult for sys-
tem owners and other stakeholders to manage their soft-
ware assets. In this work, we motivate the need for the
recovery of the provenance of software entities by a broad
set of techniques that could include signature matching,
source code fact extraction, software clone detection, call
flow graph matching, string matching, historical analyses,
and other techniques. We liken our provenance goals to that
of Bertillonage, a simple and approximate forensic analysis
technique based on bio-metrics that was developed in 19th

century France before the advent of fingerprints. As an ex-
ample, we have developed a fast, simple, and approximate
technique called anchored signature matching for identify-
ing library version information within a given Java appli-
cation. This technique involves a type of structured signa-
ture matching performed against a database of candidates
drawn from the Maven2 repository, a 150GB collection of
open source Java libraries. An exploratory case study using
a proprietary e-commerce Java application illustrates that
the approach is both feasible and effective.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement

General Terms
Management, Measurement
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1. INTRODUCTION
Most deployed software systems are composed of many

pieces drawn from a variety of disparate sources. While
the bulk of a given software system’s source code may have
been developed by a relatively stable set of known devel-
opers, often components of the shipped product may have
come from external sources. For example, software systems
commonly require the use of externally developed libraries,
which evolve independently from the target system. To en-
sure library compatibility — and avoid what is often called
“DLL-hell” — a target system may be packaged together
with specific versions of libraries that are known to work
with it. In this way, developers can ensure that their system
will run on any supported platform regardless of the par-
ticular versions of library components that clients might or
might not have already installed.

However, if software components are included without
clearly identifying their origin then a number of technical
and ethical concerns may arise. Technically, it is hard to
maintain such a system if its dependencies are not well doc-
umented; for example, if a new version of a library is re-
leased that contain security fixes, system administrators will
want to know if their existing applications are vulnerable.
Ethically, code fragments that have been copied from other
sources, such as open source software, may not have licences
that are compatible with the released system; when open
source code is discovered within a proprietary system, it
can be costly and embarrassing to the company.

Many North American financial instutions implement the
Payment Card Industry Data Security Standard [1] (PCI
DSS). Requirement 6 of this standard states “All critical
systems must have the most recently released, appropriate
software patches to protect against exploitation and com-
promise of cardholder data.” Suppose a Java application
running inside a financial institution is found to contain a
dependency on a Java archive named foo.jar. Ensuring
that the PCI DSS requirement is satisfied entails addressing
some difficult questions:

• Which version of foo.jar is the application currently
running?

• How hard would it be to upgrade to the latest version
of foo.jar?

• Has the license of foo.jar changed in the newest ver-
sion in a way that prevents upgrading?

We can use a variety of techniques for this. For exam-
ple, if we have access to the source code we can do software
clone detection. If we have access to binaries, we can per-
form clone analysis of assembler token streams, call flow
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graph matching, string matching, mining software reposito-
ries, and historical analyses.

This kind of investigation can be performed at various
levels of granularity, from code chunks to function and class
definitions, to files and subsystems up to compilation units
and libraries. But the fundamental question we are con-
cerned with is this: given a software entity, can we deter-
mine where it came from? That is, how can we establish its
provenance?

1.1 Contributions
1. We introduce the general concept of software Bertillon-

age: a method to reduce the search space when trying
to locate a software entity within a large corpus of pos-
sibilities.

2. We present an example technique of software Bertillon-
age: anchored signature matching. This method aids
in reducing the search space when trying to determine
the identity and version of a given Java archive within
a large authoritative corpus of archives, such as the
Maven repository.

3. We demonstrate the effectiveness of our method with
a case study that involves finding exact version infor-
mation of binary jars used in a real world e-commerce
application.

1.2 Bertillonage and Software Provenance
In the mid to late 19th century, police forces in Europe

and elsewhere were beginning to take advantage of emerg-
ing technologies. For example, suspected criminals in Paris
were routinely photographed upon arrest, and the photos
were organized by name in a filing system. Of course, crim-
inals soon found out that if they gave a false name upon be-
ing arrested that their chances of being identified from the
huge pool of photos was very small unless the police were
particularly patient or happened to recognize them from a
previous encounter. Alphonse Bertillon, the son of a statis-
tician who worked as a clerk for the Paris police, had the
idea that if suspects could be routinely subjected to a series
of simple physical measurements — such as height, length
of right ear, length of left foot, etc. — then the photos could
be organized hierarchically using the bio-metrics data, and
the set of photographs that had to be examined for a given
suspect could be reduced to a small handful. This approach,
later termed Bertillonage in his honour, proved to be very
effective and was a huge step forward in criminology [2].

As a forensic approach, Bertillonage also had its draw-
backs. Using the specialized measuring equipment required
extensive training and practice to be reliable, and it was
time-consuming to perform. Each of 10 measurements was
performed three times, because if even one measurement was
off then the system did not work. Also, the measurements
taken did not have a high degree of independence; tall peo-
ple tended to have long arms too.1 In time, the emerging
science of fingerprinting proved to be a much more effective
and accurate identification mechanism and Bertillonage was
forgotten. Nevertheless, Bertillon and his other inventions
— including the modern mugshot and crime scene photog-
raphy — showed how simple ideas combined intelligently
could greatly reduce the amount of manual effort required
in forensic investigations. Despite its limitations, Bertillon-

1When Francis Galton realized this, he devised the concept
of statistical correlation.

age was considered the best method of identification for two
decades [3].

Our goal in this work is to devise a series of techniques to
aid determining the provenance of software entities. That is,
given a software entity such as a function definition or an in-
cluded library, we would like to be able answer the question:
Where did this entity come from? Of course, most often the
answer will be that the entity in question was created to fit
exactly where it is within the greater design of the system,
but sometimes entities are moved around, designs are refac-
tored, new is copied from old and then tweaked. We would
like be able to answer this question authoritatively: this is
version 1.3.7 of the X library; this SCSI driver is a tweaked
clone of a driver of a similar card; most of this function f
was split off from function g during a refactoring effort in
the last development cycle, etc. Sometimes, however, our
answers will be best effort guesses, especially if we do not
have authoritative access to the original developers.

We therefore use the metaphor of software Bertillonage,
rather than, say, software fingerprinting, as we often lack suf-
ficient evidence to make a conclusive identification. Instead,
we use a set of simple and sometimes ad-hoc techniques to
narrow the search space down to a level where a manual
determination may be feasible.

1.3 Replication
Data for replication is available at:
http://juliusdavies.ca/2011/msr/bertillonage/

2. RELATED WORK
In software engineering research, similar questions have

been addressed in various guises. For example, there is a
large body of work in software clone detection that asks the
question: Which software entities have been copied (and
possibly tweaked) from other software entities. Our own
work [4] on the problem of“origin analysis”asked: If function
f is in the new version of the system but not the old, is
it really new or was it moved / renamed / merged / split
from another entity in the old version? The emphasis in our
work here is to broaden the question even more: given the
recent advances in the field of mining software repositories,
can we take advantage of the vast array of different kinds
of software development artifacts to draw conclusions about
the provenance of software entities?

There exist many studies on the origin, maintenance and
evolution of clones [5, 6, 7, 8, 9]. Others have concentrated
on their lifespan and genealogy [10]. The distinction between
these studies and our own is that we study provenance across
applications, and are not only interested in finding similar
entities, but where they come from. We are also interested
in matching similar entities when one of them is in compiled
(binary) form.

Clone detection methods (such as [11, 12]), as well as the
tracking of clones between applications [13] provided a start-
ing point for our investigation. Similar to Holmes et al. [14]
we build our own code-search index.

Di Penta et al. [15] used code search engines to find the
source code that corresponds to a Java archive (they used
the fully qualified name of the class). They found that their
main limitation was the inability to match a binary jar to
the precise version it came from. We consider their work a
simple method of Bertillonage.
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3. A FRAMEWORK FOR SOFTWARE
The goal of software Bertillonage is to provide computa-

tionally inexpensive techniques to narrow the search space
when trying to determine the provenance of a software en-
tity. More formally, we define a ‘subject’ as the entity whose
provenance we are investigating. We define ‘candidates’ as
a set of entities from a given corpus that are likely matches
to the subject. A desirable property of Bertillonage is thus
to provide, for any subject, a relatively small set of high-
likelihood candidates.

We use the metaphor of Bertillonage — an approximate
approach fraught with errors — rather than a more precise
forensic metaphor of fingerprinting or DNA analysis to em-
phasize that while we may have a lot of evidence, often we
do not have authoritative answers. For example, one of the
problems we examine involves trying to match a compiled
binary against a large set of candidate source files. If we
know the exact details of the creation of the binary — the
version of the compiler, the compilation options used, the
exact set of libraries used for linking, etc. — then we can
compile our source candidates accordingly and use simple
byte-to-byte comparison. But in reality the candidate bina-
ries are often compiled under varying conditions, and this
can result in two binary artifacts that have the same prove-
nance yet are not byte-for-byte equivalent in their binary
representations.

It may also be the case that “the suspect is not on file”,
i.e., that there may be no correct match for the subject
within the corpus. In our example of anchored signature
matching, we compare Java archives from subject software
systems against the Maven2 repository. However, Maven2 is
not a comprehensive list of all possible versions of all possible
Java libraries; in consists only of those library versions that
someone has explicitly contributed. So our subject archive
may not be present within the corpus in any form (which is
likely to be easy to determine), or the archive may be present
but not the particular version that we seek. Consequently,
we must always be willing to consider the possibility that
what we are looking for is not actually there.

Thus, instead of precision we take as our goal of software
Bertillonage the narrowing of a large search space. We seek
to prune away the low probability candidates leaving a rel-
atively small set of likely suspects, against which we may
choose to apply more expensive techniques, such as clone
detection, compilation, or manual examination. We realize
that establishing provenance may take some effort, and that
it may not even be possible in a given situation.

3.1 Bertillonage Metrics
As with forensic Bertillonage, it is necessary to define a

set of metrics that can be measured in a potential subject
and that will be relatively unique to it. This is particularly
difficult when trying to match binary to source code, because
many of the original features of the source code might be
lost during the compilation; for example, identifiers might
be lost, some portions might not be compiled, source code
entities are translated into binary form (which might include
optimizations), etc.

Given the variety of programming languages, we presume
that each will require different Bertillonage metrics. For
instance, compilation to Java is easier to analyze than com-
pilation to C++, and contains richer information. In turn,
C++ binaries maintain more information than compiled C,

as C++ maintains parameters types to support overloading
while C does not.

Another important consideration is: what is the level of
granularity of the Bertillonage? To match an entire soft-
ware system it might not be necessary to look inside each
function/method. But if the objective is to match a func-
tion/method, then the only information available to measure
are method bodies and type signatures.

Bertillonage is concerned with measuring the intrinsic prop-
erties of a subject, usually by considering different kinds of
its sub-parts, which we will call “objects of interest” (OOIs).
These measurements can be performed in various ways:

Count-based: count the number of OOIs that the subject
contains, such as number of calls to external libraries,
or uses of an obscure feature (e.g., How many times is
setjmp, longjmp used);

Set-based: compute a set of OOIs that the entity contains,
such as the string literals defined by this entity2 or set
of classes defined in a package;

Sequence-based: compute a sequence of OOIs in the en-
tity (i.e., preserving the order), such as the sequence
of methods signatures of a class, the sequence of calls
within a method, the sequence of tokens types, etc.;

Relationship-based: consider external OOIs that the sub-
ject is related to in some way; for example, what are the
dynamic libraries used by this program?

The dimensionality of possible software Bertillonage met-
rics also includes the granularity (code snippet, function /
method, class / file, package / namespace), artifact kinds
(source code, binary, structured text, natural language),
and the programming language (C, C++, Java). A good
Bertillonage metric should be computationally inexpensive,
applicable to the desired level of granularity and program-
ming language, and when applied, it should significantly re-
duce the search space.

4. METHOD
To exemplify the concept of software Bertillonage, we pro-

pose a metric that addresses the problem: if we are given
a Java binary archive, can we determine its original source
code? The most obvious source of information is the name of
the archive itself, i.e., one would expect that commons-codec-
1.1.jar comes from commons-codec, an Apache project, re-
lease 1.1.3 However, in practice this does not always work:
some projects do not adhere to consistent naming and num-
bering policies, sometimes beta tags are removed from ver-
sion identifiers, and sometimes version identifiers are re-
moved altogether when the library sources are copied into
the source tree of the application.

Alternatively, we could build a database of exact source-
to-byte matches by compiling all known sources and index-
ing the results. False positives are impossible under such
a scheme, and thus matches would provide a direct and

2The GPL Compliance Engineering Guide recommends the
extraction of literal strings to determine potential viola-
tions [16].
3This is analogous to a policeman asking a suspect for
her/his name and expecting a correct answer.

185



1 package a.b;
2 import g.h.*;
3
4 /**
5 * @author Jane Doe
6 * @since January 1, 2001
7 */
8 public class D
9 implements I<Number> {

10
11 synchronized static int a(
12 String s
13 ) throws E {
14 return "abc".hashCode () - s.hashCode ();
15 }
16 }

Figure 1 – Source code of a class D.

unquestionable link back to source code. But false nega-
tives could arise in several ways, among these: variation of
compilers (e.g., Oracle’s javac7 vs. IBM’s jikes 1.22), debug-
ging symbols (on or off), and different optimization levels.
Furthermore, library dependencies can be difficult to sat-
isfy (especially for older artifacts) making full compilation
a problem. Even without compiler variation, avenues for
false negatives remain; for example, the build scripts them-
selves might inject information at build-time directly into
class files.

The philosophy we propose, software Bertillonage, requires
us to seek characteristics that are easy to measure and com-
pare such that, even if they do not guarantee an exact match,
they will significantly reduce the search space. We are par-
ticularly interested in features that survive the compilation
process. For Java, we considered the following list of at-
tributes that are present in both source and binary forms:
1. inheritance tree, 2. implemented interfaces, 3. construc-
tors, 4. annotations, 5. method names, their return types,
and their parameters (names and types), 6. class, method,
and constructor visibility, 7. some class and method modi-
fiers (i.e., abstract), and 8. relative position of methods in
the class. Many other features are lost during compilation,
including comments, import statements, parameter modi-
fiers (such as final), and absolute position of methods, since
line numbers are preserved only when the class is compiled
with debug info.

In a nutshell, we propose a Bertillonage metric for binary
Java archives that can be used to match a binary class file
to its likely source file. Not all of the source code classes
may be included in the ultimate binary; for example, test
classes are often excluded, and sometimes a source archive
may be split into two or more binary archives. To match a
binary archive, we try to find the source archives with the
largest overlap of classes between the binary archive and a
source archive.

4.1 Anchored Class Signatures
We characterize a class C, with methods M1, ...,Mn (in

either source or binary form) to possess an anchored class
signature, denoted as ϑ(c), and defined as a tuple:

ϑ(c) = 〈σ(c), 〈σ(M1), ...σ(Mn)〉〉
where σ(a) is the type signature of the class or methods a.
That is, the anchored signature of a class is the type signa-
ture of the class itself, and the ordered sequence of the type
signatures of each of its methods. We say the signature is

1 package a.b;
2
3 public class D extends java.lang.Object
4 implements g.h.I {
5
6 public D() {
7 // Empty constructor added by javac;
8 // all classes need constructors.
9 }

10
11 synchronized static int a(
12 java.lang.String s
13 ) throws a.b.E {
14 /* [compiled byte code] */
15 }
16 }

Figure 2 – Decompiled version of a class D.

anchored since it includes the fully qualified name of the
Java file, and in this way our signature preserves attributes
used by Java’s own built-in name resolution mechanism (i.e.,
the CLASSPATH). We note, however, that developers copy
and pasting (cloning) complete classes into their own ap-
plication sometimes alter the namespace declaration of the
original class, in essence relocating the copied logic into a
new namespace. Our anchored approach will be unable to
find matches in these cases, but our results should also pos-
sess less noise; for example, very small single-constructor
exception-handling classes that happen to be coincidentally
named will not pollute our results.

When building the signature, all fully qualified parameter
types (including throws clauses) in the decompiled byte-
code are stripped of their package prefixes; for example,
g.h.I becomes I and java.lang.String becomes String.
This is done because identifying the fully qualified names
from source depends on Java’s import mechanism, which
is indeterminate. Fully qualified names that are referenced
directly in source — although rare — are also stripped of
their package prefixes, since we have no way of knowing in
the bytecode if the name came from an import or from an
inline declaration.

Consider a class file D.java (Fig. 1) and its corresponding
decompiled bytecode (Fig. 2). The Java compiler will insert
an empty constructor if no other constructors are defined,
and for that reason the bytecode version contains an empty
constructor. Class D’s signature (Fig. 3) is composed of the
type signature of the class, the type signature of the default
constructor D, and the type signature of its method a().

σ(D) = public class a.b.D extends Object implements I
σ(M1) = public D()
σ(M2) = default synchronized static int a(String) throws E

ϑ(D) = 〈σ(D), 〈σ(M1), σ(M2)〉〉

Figure 3 – Anchored class signature for D.java & D.class.

4.2 Similarity Index of Archives
To compare two archives we define a metric called the sim-

ilarity index of archives, which is intended to measure how
similar are the two archives with respect to the signatures of
the classes within them. Formally, given an archive A com-
posed of n classes A = {c1, ..., cn}, we define the signature
of an archive as the set of signatures of its contained classes.

ϑ(A) = {ϑ(c1), ..., ϑ(cn)}
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We define the Similarity Index of two archives A and B,
denoted as sim(A,B), as the Jaccard coefficient of their sig-
natures:

sim(A,B) =
|ϑ(A)

⋂
ϑ(B)|

|ϑ(A)
⋃

ϑ(B)|
Ideally, a binary archive b would have originated in source
archive S if sim(b, S) = 1. In practice, however, this is not
the case, as many classes in the source archive are often ex-
cluded from the binary archive (such as test cases). A source
archive with a very large number of test classes might have
a low similarity coefficient with its binary archive. Simi-
larly, a large archive that includes a complete copy of source
code from the original system will, due to the increased size,
also have a low similarity index. To address these issues we
define the concept of inclusion index.

4.3 Inclusion Index of Archives
The inclusion index of archive A in B, denoted as

inclusion(A, B), is the proportion of class signatures found
in both archives with respect to the size of A.

inclusion(A,B) =
|ϑ(A)

⋂
ϑ(B)|

|ϑ(A)|
The intuition here is that when the inclusion index of a
binary archive A in archive B is close to 1, then the classes
in A are present in B.

4.4 Finding Candidate Matches
Given a binary archive b, we can use the similarity and

inclusion indexes to rank the likelihood that any archive in
a corpus might contain the same code found in the binary
archive. The higher the similarity index, the more likely
both are instances of the same source code, and the higher
the inclusion index, the more likely the candidate matched
archive will contain a copy of the source code that created
the subject binary archive. A candidate archive that has
low similarity index but high inclusion index is likely to be a
bundle of several Java applications, one of which corresponds
to the subject binary archive.

If the similarity index is zero, then no archive in the cor-
pus contains a single class signature in common with the
binary archive. A very low inclusion index might point to-
wards a match to an archive that implements a common
class signature.

We can formalize finding the best match(es) for a binary
archive in an archive corpus as follows: given a set of archives
S = {s1, ..., sn} (the corpus), we find the best candidate
matches a of binary archive b as the subset of L ⊆ S such
that:

∀si ∈ L sim(b, si) > 0 ∧ sim(b, si) = maxsim[S, b]

where maxsim[S, b] is the maximum similarity index of b
and the elements in S. In the ideal case, L has only one
member. In practice, however, the corpus often has several
candidate matches with equal maximum similarity scores.
We have found several reasons for multiple archives having
the same maximal score: there may be identical redundant
archive copies in Maven2; some archives differ only in docu-
mentation or other non-code attributes; some non-identical
archives may simply achieve equal scores; and the signature
of an archive may remain constant across multiple versions if
there are implementation changes but no interface changes.
This last case is typical in minor release updates.

5. IMPLEMENTATION

5.1 Building a Corpus
To be effective, any approach that implements the Bertillon-

age philosophy requires a corpus that is as comprehensive as
possible. For Java, the Maven2 Central Repository4 fulfills
this requirement. Maven2 provides a large public reposi-
tory of reusable Java components and libraries under var-
ious open source licenses, often including multiple versions
of each component; it serves as the Java development com-
munity’s de facto library archive. Originally, the repository
was developed as a place from where the Maven build sys-
tem could download required libraries to build and compile
an application. Because of the repository’s broad coverage
and depth, even competing dependency resolvers make use
of it (i.e., http://ant.apache.org/ivy/).

Maven2, as a whole, is unversioned: today’s Maven2 col-
lection will be different from tomorrow’s, as there is a con-
tinual accumulation of artifacts. This is unlike the major
GNU/Linux compilations of free and open source software
such as Debian, where Debian 5.0 is a fixed collection after
its official release date.

5.2 Extracting the Class Signatures
We developed two tools to extract anchored class signa-

tures from Java archives: a handcrafted parser for analyzing
source code, and a byte code analyzer based on the bcel5

library. We now briefly describe them.

5.2.1 Extracting a Class Signature From Source
When analyzing a source file we first discard comments,

import statements, parameter names, and parameter mod-
ifiers, since such attributes of source files are not reliably
preserved during compilation. We also discard generics, an-
notations, and inner classes, since our Java parser cannot
yet process these attributes correctly. Once this is done, we
then extract the class signature in this way:
1. Extract the package and class line. We must re-introduce

the default ‘extends Object’ declaration as part of our
signature if the source in question does not subclass
anything. For our example in Figure 1, the result is:

public class a.b.D extends Object implements I

For classes that implement more than one interface, we
sort the interfaces in lexicographical order.

2. If necessary, re-introduce the default constructor. The
Java compiler will insert an empty constructor if no
other constructors are defined; we must also do the
same.

3. Extract methods preserving order. If there are excep-
tion types listed in the throws clause, we sort these
lexicographically. As for visibility, should a method de-
clare itself neither private, protected, nor public, we
then store it as ‘default’ in our signature, i.e.:

default synchronized static int a(String) throws E

Due to limitations of our prototype Java parser, we cur-
rently ignore inner-classes, abstract methods, and na-
tive methods.

5.2.2 Extracting a Class Signature From Bytecode
The approach on the bytecode side is somewhat inverted.

Consider the hypothetical ‘decompiled’ Figure 2 for D.class,

4http://repo1.maven.org/maven2/
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cewolf-1.0.jar |A| |B| |A⋂
B| |A⋃

B| sim(A,B) inclusion(A, B) path for each B
77 77 77 77 1.000 1.000 maven2/cewolf/cewolf/1.0/cewolf-1.0.jar
77 77 68 86 0.791 0.883 maven2/cewolf/cewolf/0.12.0/cewolf-0.12.0.jar
77 77 64 90 0.711 0.831 maven2/cewolf/cewolf/0.10.3/cewolf-0.10.3.jar

Table 1 – Three candidate jars are found after we query the corpus using ‘cewolf-1.0.jar’.

from before. Creating the anchored class signature here in-
volves three activities:
1. Extract the package and class line. As before we assem-

ble a package and class line; here, we must shorten the
fully-qualified names that bcel5 extracts.

2. Extract methods, preserving order. We shorten the fully-
qualified names among the method parameter types and
exception types. A visibility of ‘default’ is stored if nec-
essary. Unlike the current version of our source parser,
bcel5 has no problem extracting interfaces, abstract
methods, inner classes, and native methods; we ignore
them.

3. Remove methods introduced to implement non-generic
interfaces. Classes sometimes contain additional meth-
ods added by the Java compiler to satisfy non-generic
implementations of genericized interfaces (for backwards
compatibility). We removed such methods, since they
cause otherwise perfectly matching signatures to di-
verge.

When this process completes for both of our two examples,
D.java, and D.class, we should possess a class signature
identical to Figure 3.

5.3 Matching a Subject Artifact to Candidates
The source and bytecode tools we developed to extract the

signatures are employed both in the construction of a corpus
index, as well as the generation of queries to find matching
candidates. The two phases are described below.

Building the Corpus Index: we scan every source
and binary archive within the Maven2 repository, includ-
ing archives within archives. For each source and compiled
class file we compute its signature using the steps described
in section 5.2. To improve response time for finding matches,
we index each signature using its SHA1 hash.

Finding Matches: we are interested in finding what
archives have matching classes with the subject, and what
these classes are. To perform this step efficiently we use the
following algorithm:
1. For each class present in the subject, find its matching

classes (with identical class signature) in the corpus.
2. Group the union of all matching classes (for all the

classes in the subject) by their corresponding archive.
This will result in a list of all archives that have at
least one matching class with the subject, and for each
archive, the list of matching classes with the subject.

At this point we can now compute the similarity and inclu-
sion indexes of the subject archive, with each of the archives
that have at least one matching class. Table 1 shows an ex-
ample where a subject artifact (cewolf-1.0.jar) is matched
to candidate artifacts within the corpus.

Note that, even in an exact match, the archive signature
similarity index might not be equal to 1. This is because the
source package might contain some source Java files that are
not included in the binary jar, such as unit tests. However,
every class in the binary archive should be present in the
source archive.

6. EVALUATION
In a related research project we had to perform a license

and security audit of a real world e-commerce application
comprised of 84 open source libraries. The audits had to be
performed against both the binary and source code forms
of these included libraries. Before we could conduct the au-
dits, we needed to determine the provenance of all included
libraries.

Accurate and precise provenance information forms an im-
portant foundation for many types of higher-level analyses.
Such analyses include, among others, license audits, secu-
rity vulnerability scans, and patch-level assessments (as re-
quired by the PCI DSS security standard). A license audit
of software dependencies must reflect the reality that soft-
ware licenses sometimes evolve (change between releases).
Similarily, known security holes in libraries will affect spe-
cific releases or version ranges. The PCI DSS requirement
#6, “All critical systems must have the most recently re-
leased, appropriate software patches,” cannot be satisfied
without knowledge of the existing patch versions. In this
vein we believed that conducting a license audit and a se-
curity audit would provide real value to the developers of
the e-commerce application, while also providing us with a
chance to test our Bertillonage approach in the field. We ap-
plied our technique in two different modes, binary-to-binary,
and source-to-binary, and we define a research question for
each of these modes:

RQ1: How useful is the similarity index for nar-
rowing the search space to find an original binary
archive when provided a subject binary archive?

RQ2: How useful is the similarity index for nar-
rowing the search space to find an original source
archive when provided a subject binary archive?

6.1 Setting
We downloaded the complete Maven2 central repository

(between June 12th and 15th, 2010) using the following com-
mand: rsync -v -t -l -r mirrors.ibiblio.org::maven2 .

Thus we obtained over 150G of jars, zips, tarballs, and
other files. First we decompressed all tar-related archives to
disk (.tgz, .tar.gz, .tar.bz2, etc.), including tars inside
tars. Zip-related archives, including jar files, were processed
in memory, including zips inside zips. We were surprised by
the number of times an archive is included in another one;
for example over 75,000 class signatures came from archives
nested 4-levels deep.

There were a total of 130,000 binary jars5. Of them 75,000
were unique. We processed a total of 27 million binary class
files and 4 million source Java files (including many dupli-
cates). We were surprised by the disproportion between the
number of binary and source files (6 times more).

For RQ1, for each of the 84 e-commerce jars, we computed

5Our definition of binary archive is a jar file that contains
at least one .class file.
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their similarity index against every binary archive in the
corpus, and selected the set of matches with the highest
similarity as the binary archive match.

For RQ2, the same procedure is performed as in RQ1,
but instead the similarity index is computed against every
source archive in the corpus. For RQ1 and RQ2 we classified
a match into one of three categories:

Exact. The set of matches included a version identical to
the e-commerce subject jar.

Correct Product. The set of matches included versions
either precedent or subsequent of the same library as
the e-commerce subject jar, but an identical version
was not matched.

Incorrect. The set of matches was either the empty set
(no matches), or the matches included only libraries
that were different than the e-commerce subject jar.

6.2 Results
This section reports results of analyzing jar libraries from

a proprietary e-commerce Java application to answer the re-
search questions formulated in Section 4. The analysis was
performed on a single Athlon 4850e 2.5ghz PC with 4GB or
RAM running Debian 5.0.5 and PostgreSQL 8.4. The SQL
queries we ran (2 queries per jar) required approximately 15
minutes in total to complete. Decompressing and extract-
ing signatures to build our index of the 150GB of archives
comprising the Maven2 repository required 48 hours. Down-
loading Maven2 over rsync was by far the longest phase of
our experiment, requiring four days.

6.2.1 RQ1: Binary-to-Binary Matches

Similarity Type Correct

index of match Exact product Incorrect

1 Single 48 3
Multiple 19 1
Subtotal 67 4 0

(0, 1) Single 1 9 2
Multiple
Subtotal 1 9 2

0 No match 1

Total 68 13 3

Table 2 – Using a binary-to-binary bertillonage technique
to determine the provenance of 84 open source binary
archives in a proprietary e-commerce application.

Single Match, Similarity = 1. For 51 of the 84 binary
jars (60.7%), our method correctly found a single candidate
from the corpus with a similarity index of 1.0. This repre-
sents the best possible case for our anchored signature ap-
proach: the search space was narrowed such that additional
metrics to further narrow the results were unnecessary. Of
these 51 jars, 48 were exact matches, and 3 were correct-
product matches.

Subsequent analysis for each of these 3 correct product-
matches revealed the e-commerce application was using li-
brary versions missing from the corpus’s collection. Unfortu-
nately, two scenarios show that some jar versions will prob-
ably never be found in any corpus:

1. The application developers may choose to use an ex-
perimental or “pre-released” version of a library that
is unlikely to appear in any formal corpus. We ob-
served one example of this in our study (stax-ex-1.2-
SNAPSHOT.jar).

2. Developers may download libraries directly from an open
source project’s version control system, for example,
should they require a bleeding edge feature or a par-
ticularly urgent fix. In these cases the jar is built di-
rectly from the VCS instead of from an official released
version.

The matches were close in version to the correct (missing)
candidates, as shown in Table 3.

Correct jar Close match
(not in corpus) Sim (from corpus)

jaxws-api-2.1.3.jar 1.0 jaxws-api-2.1.jar
stax-ex-1.2-SNAPSHOT.jar 1.0 stax-ex-1.2.jar
streambuffer-0.5.jar 1.0 streambuffer-0.7.jar

Table 3 – Three matches with similarity=1 were close in
version to the correct (missing) jars.

Multiple Match, Similarity = 1. For 20 of the 84
binary jars (23.8%), our method found several candidates in
the corpus with similarity of 1.0. In all cases the candidate
set covered a contiguous sequence of versions, as shown in
Table 4, save for holes in the corpus’s collection. Of these
20 multiple matches, the exact match was present for 19
cases. The remaining case, xsdlib.jar, we classified it as
a correct-product match, (since the matched jars, xsdlib-
1.5.jar and xsdlib-20050614.jar, came from the correct open
source project), but as an incorrect version. The correct
version, xsdlib-20040524.jar, was not present in the corpus.

Similarity to
asm-attrs-2.2.3.jar Artifacts from corpus

1.0 asm-attrs-2.1.jar
1.0 asm-attrs-2.2.jar
1.0 asm-attrs-2.2.1.jar
1.0 asm-attrs-2.2.3.jar

Table 4 – Example of multiple matches with similarity=1.
The exact match is asm-attrs-2.2.3.jar.

For some of the jars the resulting candidate set was small
(2 or 3 candidates) such that a little manual work would
likely produce the correct version from the corpus. But in
other cases over 30 candidates were returned. The median
number of candidates was 4 and the average was 6.25.

Single Match, Similarity Between 0 and 1. For 12 of
the 84 binary jars (14.3%), our method found matches, but
none had 1.0 similarity. Among these 12 the median simi-
larity score was 0.122 and the average was 0.288. In two of
these cases, the e-commerce application was using develop-
ment snapshots (not official releases). In another two cases
the versions in Maven2 were mislabeled. Five cases were
very old XML and Crypto libraries that predate Maven2.
One case was due to binary cloning in a proprietary jar:
vreports.jar contained several classes from other popular
open source libraries. The final two matches in this cat-
egory were packaged in ways that confused our technique.
For example, jaxb-xjc-2.1.6.jar included several identi-
cal class files in separate locations inside its archive. The
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other example, commons-digester-1.5.jar, had the order
of its methods permuted, but was otherwise identical to the
copies of commons-digester-1.5.jar in the corpus.

No Information. One of the 84 jars was not present
in our corpus, and so no information could be found. We
verified that the jar was an open source library by locating
its project website (in sourceforge.net), but for reasons un-
known to us the Maven2 repository does not include this
particular library.

To answer RQ1, the similarity index is highly useful at
narrowing the search space to find original binary archives.
We found correct-product or exact binary matches for 81
of the 84 binary jars in our sample set (96.4%).

6.2.2 RQ2: Binary-to-Source Matches

Similarity Type Correct

index of match Exact product Incorrect

1 Single 13 2
Multiple 6 1
Subtotal 19 3 0

(0, 1) Single 21 18 1
Multiple 4 2
Subtotal 25 20 1

0 No match 16

Total 34 23 17

Table 5 – Using a binary-to-source bertillonage technique
to determine the provenance of 84 OSS binary archives in a
proprietary e-commerce application.

Our results for binary-to-source matching were similar in
character to RQ1’s binary-to-binary results, as shown in Ta-
ble 5, although slightly inferior across the board.
1. Similarity=1 occurred for only 22 cases (26.2%) as op-

posed to 71 cases (84.5%) for RQ1.
2. Binary-to-source matching found half as many exact

matches (34 compared to 68), and 75% more of the
correct-product matches (23 compared to 13).

3. In addition, 16 jars could not be matched with any
sources. This compares with only 1 jar finding no bi-
nary matches for RQ1.

We suspect two factors are contributing to the inferior
performance. First, our corpus contains only 4 million Java
source files compared to almost 27 million compiled class
files. This results in many fewer source archives available
for matching. For example, batik-util-1.6.jar matched no
source archives, and yet for RQ1 the same jar file matched
15 distinct binary archives, ranging from similarity 1.0 down
to 0.006, with zip timestamps between Dec.’01 and June ’08.

Second, binary-to-binary matching made use of a single
tool both in the construction of the index and the construc-
tion of the similarity query. Source-to-binary matching re-
quired a separate tool for the construction of the source in-
dex. While we saw that our source tool constructed identical
signatures over 99% of the time, there were instances where
the binary tool constructed a different signature, despite the
binary being known to originate from the source.

To answer RQ2, the similarity index is useful the majority
of the time to narrow the search space to find original
source archives. We found correct-product or exact source
matches for 57 of the 84 binary jars (67.9%).

6.3 Threats to Validity
This section discusses the main threats to validity that

can affect the study we performed.
In particular, threats to construct validity may concern

imprecision in the measurements we performed. Our logic
for detecting Java and class files in the Maven2 repository
relied on accurate detection of .java and .class files, as well
as .jar, .zip, .tar.gz, .tar.bz2, and .tgz archives. No
other search patterns were employed, and thus some archives
may have been missed. This threat is diminished thanks to
the very large amount of data we managed to extract from
just those seven search patterns.

Our subsequent logic for extracting the class signatures
could be faulty, in particular our Java source parser. We
are less concerned about faults in our bytecode analysis,
since the bcel-5.2.jar tool we used is 4 years old, very
popular, and very well tested. Bearing in mind that our
Java source parser is potentially a problem, we believe our
results nonetheless resemble exactly the shape one would
expect for a class-signature-index approach, with matches
resembling a bell curve that drops off as version-numbers
diverge from the exact match. In addition, queries involving
only bytecode (e.g., queries for bytecode using bytecode)
resulted in a similar bell curve, alleviating concerns over our
source parser.

Threats to internal validity arise primarily from our tech-
nique for verifying a correct match: we visually check the
version number in the names of jars and zip files. We only
conducted a thorough byte-by-byte comparison in cases where
the initial visual check failed.

Threats to external validity concern the generalization of
our results. We provide a single case study involving a pro-
prietary enterprise application, and us such, our study shows
feasibility rather than generalizability. Another threat to
our external validity comes from Maven’s own composition:
is Maven’s repository a good sample of open source soft-
ware in the Java eco-system? Given its critical position in
industry with respect to Java dependency resolution (even
unrelated dependency resolvers such as Ivy use the Maven2
repository), we believe it is representative. We have one
complaint about its composition: it contains too many al-
pha, beta, milestone, and release-candidate artifacts that
are likely of little interest to integrators.

7. DISCUSSION
What is provenance? Is name and release number alone

a suitable representation of provenance for our purposes?
Suppose a given jar is authoritatively known to be named
foo and to be release x.y.z. Our method assigned the high-
est similarity score to this single candidate, foo-x.y.z.jar, for
over 60% of the subject jars in our case study. But can
provenance really be boiled down to a small sequence of
characters, hyphens, digits and dots. Does foo-1.2.3 con-
stitute provenance? This question is important, since our
technique assumes it.

Fortunately, for the majority of the jars in this study,
and perhaps for the majority in “current circulation” among
Java developers, this notion of provenance is sufficient. As
a thought experiement, imagine asking random undergradu-
ate students enrolled in Introduction to Computer Program-
ming at any university to download the oro-2.0.8.jar Java
library. In all likelihood the vast majority would download
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the same artifact, even those completely unfamiliar with
Java. The universe of Java developers manages to avoid
name and version collisions among their reusable libraries.

However, for some jars, this notion of provenance is in-
sufficient. The underlying assumption with respect to name
and release number is that the combination of these two at-
tributes will always result in a distinct set of software code,
an authoritative snapshot, frozen in time. Among the 84 jars
studied, we observed three challenges to a foo-1.2.3 notion
of provenance:

1. Jars that, during their build process, copy classes from
other jars. For example, vreports.jar contains copies
of classes from itext.jar.

2. Jars with historically unstable provenance, perhaps due
to corporate acquisitions, or even internal restructur-
ings within a company. The Sun/Oracle jar named xs-

dlib.jar is an example of this. Various project web-
sites provide conflicting testimony regarding the jar’s
origins. Each of these projects appears to have taken
control of, or at least contributed to, xsdlib.jar’s de-
velopment at some point in its history. The answer may
very well be a combination of the projects we observed,
which each project contributing to different phases of
xsdlib.jar’s evolution. In cases such as these, our
Bertillonage results can resemble a hall of mirrors. More
expensive analysis methods, such as sending questions
to project mailing lists, or analyzing version control
repositories are required.

3. Altered Jars, e.g., a particular foo-1.2.3.jar, may
contain 10 classes, whereas another jar with the same
name and release information may contain only 9 classes.
In some cases these 9 are a proper subset of the 10. Per-
haps a user of the library has customized it by adding
or removing a class. Which archive is authoritative in
this case? We have examples of this in our data.

In the face of these challenges our Bertillonage approach
was surprisingly fruitful. Our simple Bertillonage metric
could readily accommodate #1 (emcompassed jars). Chal-
lenges #2 (unstable provenance) and #3 (altered jars) al-
ways required additional narrowing work, and yet our ap-
proach nonetheless still revealed when these particular chal-
lenges were occurring. Rather than reinforce our initially
narrow notions of provenance, thanks to the simplicity of our
metric, and particularly thanks to an immense (and messy)
data source such as Maven2, our study outlined what future
provenance research must tackle.

7.1 A Foundation for Higher Analyses
Developing, deploying and maintaining software systems

can involve many diverse groups within (and external to)
an organization. Each of these groups may require differ-
ent knowledge about the software systems they are involved
with. For example, testers, developers, system administra-
tors, salespeople, managers, executives, auditors, owners,
and other stakeholders may have specific questions they need
answered about an organization’s software assets. A sales-
person may have a technically demanding client that insists
on a specific release of a particular library. The security
auditor wants to make sure no libraries or copy-pasted code
fragments contain known security holes. The license auditor

wants to know if her license requirements are being fulfilled.
The manager wants to know how risky an upgrade to the
latest release of a popular object-relational database map-
ping library might be. As noted in section 6, provenance
forms a critical foundation upon which these higher level
analyses rely. Without reliable provenance information in
place these stakeholders cannot even begin to find answers
to their questions.

Provenance information is also important to the software
developers responsible for importing and integrating libraries
and code fragments into their software systems. Therefore
name and release information is often encoded directly into
an artifact’s file name (e.g., oro-2.0.7.jar). But some-
times developers may omit the release numbering, or they
may mistype it. Also, as we noted earlier, in some cases an
artifact internally encompasses additional artifacts, render-
ing the file name inadequate for communicating the versions
of the encompassed releases. For these reasons, higher level
analyses cannot depend on filename alone.

The specific metric we introduced here, anchored signa-
ture matching, will by no means be the final word in soft-
ware Bertillonage. But we found our simple metric to be
effective: it was able to supply useful provenance informa-
tion for over 95% of the subject archives, including com-
plex cases where an archive encompassed other archives. Of
course some manual effort was required in our case study to
narrow all matched candidates to single exact matches, but
for the majority of these the original filename was correct,
and so the manual effort was minimal. Our result minimizes
the risk of relying on filenames exclusively when performing
higher level analyses that depend on provenance. We also
note the excellent binary-to-binary results we obtained can
serve as a bridge to improved binary-to-source results: with
a single binary match, manually locating the corresponding
source archive (especially in the open source world) is trivial.
This “bridging” idea mitigates the downside of our inferior
binary-to-source results.

Our technique also performed well in a separate informal
exercise to determine the moment of a copy-paste of class
files. We noticed the developers of httpclient.jar, an open
source Java library, had posed a question on their mail-
ing list: when did Google Android developers copy-paste
httpclient.jar classes into android.jar?6 They wanted
to know this to evaluate how hard it would be for Google
to import a more recent version of their jar. We employed
our technique to answer the original question on the mail-
ing list, and the main developer confirmed our result. We
initially identified 4.0-beta1 as the moment of the copy-
paste. The developer asked if we could also test against
4 0 API FREEZE, an uncommon version he suspected Goo-
gle had actually imported. We loaded the FREEZE release
into our index and re-ran our analysis. This resulted in both
4.0-beta1 and 4 0 API FREEZE being returned as equally
likely matches for android.jar.

We were successful in narrowing the search space for the
moment of copy-paste two just two versions. In addition,
the httpclient.jar exercise motivated future work. Prece-
dent and subsequent releases diverge with respect to the
cardinality of their intersecting signatures. Our anchored
signature match is not just useful for finding exact matches.
It could also prove useful at measuring the distance between

6See email from Bob Lee to dev@hc.apache.org on 18 Mar
2010 23:47:14 GMT, subject ”Re: HttpClient in Android.”
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versions, which in turn could be useful for performing risk
assessment of releases.

As stated earlier, we performed a license audit and se-
curity audit using the provenance information unearthed
from the case study. The results of these higher analyses
proved useful: the license audit pinpointed a jar where some
versions used the GNU Affero license, while other versions
used LGPL; similarily, the security audit located a jar with
a known security hole. The organization found the results
from both of these audits valuable, and steps were taken to
address both issues in their application.

8. CONCLUSION AND FUTURE WORK
In this paper, we have discussed the problem of deter-

mining the provenance of a software entity. That is, given
a library, file, function, or even snippet of code, we would
like to be able to determine its origin: Was the entity de-
signed to fit into the design of the system where it sits, or
has it been borrowed or adapted from another entity else-
where? We argued that determining software entity prove-
nance can be both difficult and expensive, given that the
candidate set may be large, there may be multiple or even
no true matches, and that the entities may have evolved in
the mean time. Consequently, we introduced the general
idea of software Bertillonage: fast, approximate techniques
for narrowing a large search space down to a tractable set
of likely suspects.

As an example of software Bertillonage, we introduced
anchored signature matching, a method to determine the
provenance of source code contained within Java archives.
We demonstrated the effectiveness of this simple and ap-
proximate technique by means of an exploratory case study
performed on a proprietary e-commerce application using
a corpus drawn from the Maven2 Java library repository.
We found that we were able to reliably identify the cor-
rect product information of contained binary Java archives
if the product was present in Maven, and such cases we were
also usually able to identify the correct version. If a sought
product was not present in Maven, this was usually quickly
obvious. However, if a product was present we found that
identifying the correct version was sometimes tricky, requir-
ing detailed manual examination. The use of anchored sig-
nature matching proved to be very effective in eliminating
superficially similar non-matches, providing a small result
set of candidates that could be evaluated in detail.

Being able to determine the provenance of software enti-
ties is becoming increasingly important to software develop-
ers, IT managers, and the companies they work for. Given
the wide ranging nature of the problem, the large candidate
sets that must be examined, and the detailed amount of
analysis required to verify matches, we feel that this is only
the beginning of software Bertillonage. We need to design a
wide array of techniques to narrow the search space quickly
and accurately, so that we can then perform more expensive
analyses on candidate sets of tractable size.
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